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Abstract

This paper investigates the approximation of multivariate func-
tions from data via linear combinations of translates of a positive
definite kernel from a reproducing kernel Hilbert space. If standard
interpolation conditions are relaxed by Chebyshev–type constraints,
one can minimize the norm of the approximant in the Hilbert space
under these constraints. By standard arguments of optimization the-
ory, the solutions will take a simple form, based on the data related to
the active constraints, called support vectors in the context of machine
learning, The corresponding quadratic programming problems are in-
vestigated to some extent. Using monotonicity results concerning the
Hilbert space norm, iterative techniques based on small quadratic sub-
problems on active sets are shown to be finite, even if they drop part of
their previous information and even if they are used for infinite data,
e.g. in the context of online learning. Numerical experiments confirm
the theoretical results.
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1 Introduction

This paper considers exact or approximate reconstruction of data f1, . . . , fN

on a large multivariate point set X = {x1, . . . , xN} ⊂ Rd by functions s that
guarantee a uniform error bound

−η ≤ s(xj)− fj ≤ η, 1 ≤ j ≤ N. (1)

The functions s should be as simple as possible. However, asking for a small
error bound η will blow up the complexity of the solution s. In fact, one
might even get exact interpolation with η = 0, but at the expense of a rather
complicated s. Conversely, there is the least complicated solution s = 0
with a large error η = ‖f‖∞. This tradeoff between the complexity of the
reconstructing function s and the error bound η is called the “bias–variance–
dilemma” in regression theory. Without referring to probabilistic arguments
at all, it will be the main concern of this paper, together with providing
efficient techniques to find reasonably good solutions. It is a standard tech-
nique to pick out “good” solutions s of (1) with special properties by adding
a penalty or objective function and solving the corresponding optimization
problem. The additional objective function is interpreted as a risk or loss
function, depending on the statistical context. But the latter is considered
here as a background information supporting a particular choice of optimiza-
tion problem, and it will be completely ignored in this paper.

In the context of machine learning [17, 15], the function s represents an
unknown regression map from a vector input to a scalar output, and the pairs
(xj, fj) are called “training data”. The case of classification learning can be
written in a similar form without significant loss or increase of complexity
[12].

2 Kernels

Minimizing η under all s from a fixed finite–dimensional space S is just a
standard linear Chebyshev approximation problem, solvable by linear pro-
gramming, preferably via the revised technique applied to the dual problem
[5]. But one would need to vary S in order to find the best solution with
fixed complexity, i.e. to find the minimal value of η when s comes from any
space S with k = dimS fixed, but S itself allowed to vary. This is a multi-
variate generalization of Chebyshev approximation by splines with free knots
[1]. One could also start from a fixed error level η and try to find a space S
of smallest dimension such that there is some s ∈ S satisfying (1). In all of
these cases, the problem turns nonlinear, if S is allowed to vary.

If some reasonable penalty function based on s and η is minimized over the
feasible set described by (1), the corresponding Kuhn–Tucker conditions will
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introduce active point sets

Y± := {y ∈ X : s(y)− f(y) = ±η} (2)

where, for simplicity, f stands for the function with fj = f(xj) for all xj ∈ X.
These sets will naturally be very important in any numerical technique that
calculates a good solution to (1), because they pick “critical” or “support”
points from X for which there is no leeway for arbitrary perturbations. They
are selected after some possibly complicated optimization process, but they
may be of considerably smaller size than X itself.

Thus it is a reasonable idea to link point sets like Y± to function spaces S for
s, and this can be done by the “kernel trick” of learning theory that maps
points y to functions K(·, y) in “feature space” via some kernel function K.
In particular, one can define

KY := span {K(·, y) : y ∈ Y } (3)

for finite subsets Y ⊂ Rd, provided that K maps Rd × Rd into R. This is
very useful, because it maps sets into spaces.

But there is still another viewpoint, especially for those readers who consider
the kernel trick as something new or special. If a general quadratic penalty
on s is minimized that can be written as (s, s) via some inner product in
some function space S, and if point evaluation is continous with respect
to this inner product, then one can form the Hilbert space closure of S
with a reproducing kernel K. Thus the “kernel trick” situation turns out
to be necessary whenever an inner product penalty with continuous point
evaluation is minimized. Consequently, there is quite some history [16] of
kernel techniques long before learning theory became popular.

3 Optimization Problems

Motivated by

• the above discussion,

• interpolation by radial basis functions or conditionally positive kernels
and

• regression problems solved by support vector machines in the context
of learning theory,

this paper focuses on functions s from reproducing kernel Hilbert spaces
on Rd. These are generated by a symmetric positive definite kernel K :
Rd × Rd 7→ R such that an inner product (., .)K on functions of the form
K(·, x) is well–defined and satisfies

(K(·, x), K(·, y))K = K(x, y) (4)
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for all x, y ∈ Rd. The closure of the space of linear combinations of such func-
tions under the inner product forms a Hilbert space K with the reproduction
property

s(x) = (s, K(·, x))K for all s ∈ K, x ∈ Rd. (5)

In the context of radial basis function techniques, this space was called the
“native” space for K. The more general case of “conditionally” positive
definite kernels (see Micchelli [6]) is omitted here for simplicity. There is
a standard trick [11] to transform conditionally positive definite kernels to
strictly positive definite ones.

The goal is to find simple functions s from K satisfying (1), and their com-
plexity will be controlled by picking them from finite–dimensional subspaces
of the form (3) for finite subsets Y ⊂ Rd. Since it is well–known that exact
interpolation of the data by a unique function s∗X from the space KX is always
possible, inequalities (1) always have admissible functions for any choice of
η ≥ 0 with a complexity related to N = |X| in the worst case. However, one
should preferably find functions s that satisfy (1) for small positive η and
come from subspaces KY with sets Y that are considerably smaller than X.

Using the inner product (4) one can ask for a function s ∈ K that satisfies
(1) for fixed η and has minimal norm in K. Or one can allow η to vary also,
and then minimize the quadratic form

1

2
(s, s)K + Cη (6)

for some fixed positive constant C over all s ∈ K and η ∈ R under the
constraints (1). Increasing C allows to put more emphasis on the error at
the expense of complexity. This quadratic optimization problem with linear
constraints will be called the unrestricted problem in this paper, while the
restricted problem fixes η.

Note that for C = η = 0 we have an optimal recovery problem [10, 7, 8, 9]
with exact data, and this paper generalizes optimal recovery in the sense of
C. A. Micchelli et. al. for uncertain data with strict bounds of the form (1).

In practice, both problems will be hard to handle for large N because of their
O(N) variables and 2N restrictions. The situation is not improving if we go
over to the dual problem. Furthermore, it is not clear at the beginning how
the trade–off between error and complexity turns out for a specific data set.
Thus it is necessary to go somewhat deeper into the geometry of the feasible
set and focus on efficient iterative solution techniques.
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4 Restricted Problem

Theorem 1 Let η > 0 be given. The finite dimensional restricted problem
on X is given by

(P )fr

{
minimize F (s) := 1

2
(s, s)K subject to

s ∈ KX , −η ≤ s(x)− f(x) ≤ η (x ∈ X).

It has a unique solution s∗(·) =
∑

x∈X α∗xK(·, x) where the unique coefficient
vector α∗X = (α∗x)x∈X is characterized by the existence of nonnegative vectors
λ∗X and µ∗X such that α∗X = µ∗X − λ∗X and

λ∗x(s
∗(x)− f(x)− η) = 0,

µ∗x(−s∗(x) + f(x)− η) = 0,
for all x ∈ X.

There exist (possibly empty) sets Y+, Y− ⊂ X such that α∗x < 0 for all x ∈ Y+,
α∗x > 0 for all x ∈ Y−,

s∗(x)− f(x) = η (x ∈ Y+), s(x∗)− f(x) = −η (x ∈ Y−),

and α∗x = 0 for all x ∈ X \ (Y+ ∪ Y−).

Proof: The problem is equivalent to a feasible quadratic program with a
strictly convex objective function. Thus existence and uniqueness of a so-
lution are evident. An application of the Kuhn-Tucker theorem proves the
characterization of a solution. Now define

Y+ := {x ∈ X : λ∗x > 0, µ∗x = 0}, Y− := {x ∈ X : λ∗x = 0, µ∗x > 0}.

Obviously Y+ and Y− have the desired properties. Here we used the fact that
because of η > 0 no x ∈ X exists such that λ∗x > 0 and µ∗x > 0. 2

Theorem 2 Let η > 0 be given. The infinite dimensional restricted problem
on X is given by

(P )ir

{
minimize F (s) := 1

2
(s, s)K subject to

s ∈ K, −η ≤ s(x)− f(x) ≤ η (x ∈ X).

It has a unique solution which is given by the unique solution s∗ of the cor-
responding finite dimensional restricted problem on X.

Proof: We show that the infinite problem (P)ir is solved by the solution s∗

of the finite–dimensional problem. Then uniqueness will follow from strict
convexity of the objective function. Since (P )ir is a convex program we have
to show that F ′(s∗)(s− s∗) ≥ 0 for any s ∈ K that is feasible for (P )ir. With
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Y+ and Y− as in Theorem 1 the reproduction formula gives

F ′(s∗)(s− s∗) = (s∗, s− s∗)K

=
∑
x∈X

α∗x(K(·, x), s− s∗)

=
∑
x∈X

α∗x(s(x)− s(x∗))

=
∑

x∈Y+∪Y−

α∗x(s(x)− s∗(x))

=
∑
x∈Y+

α∗x︸︷︷︸
<0

(s(x)− f(x)− η)︸ ︷︷ ︸
≤0

+
∑
x∈Y−

α∗x︸︷︷︸
>0

(s(x)− f(x) + η)︸ ︷︷ ︸
≥0

≥ 0

proving the desired result. 2

5 Unrestricted Problem

Theorem 3 Let C > 0 be given. The finite dimensional unrestricted problem

(P )fu

{
minimize F (s, η) := 1

2
(s, s)K + Cη subject to

(s, η) ∈ KX × R, −η ≤ s(x)− f(x) ≤ η (x ∈ X)

has a unique solution (s∗, η∗). This solution can be uniquely represented as

s∗(·) =
∑
x∈X

α∗xK(·, x), η∗ =
1

C

∑
x∈X

α∗x(f(x)− s∗(x)).

The unique coefficient vector α∗X = (α∗x)x∈X is characterized by the existence
of nonnegative vectors λ∗X and µ∗X such that α∗X = µ∗X − λ∗X and

λ∗x(s
∗(x)− f(x)− η∗) = 0,

µ∗x(−s∗(x) + f(x)− η∗) = 0,
for all x ∈ X.

If η∗ > 0 there exist (possibly empty) sets Y+, Y− ⊂ X such that α∗x < 0 for
all x ∈ Y+, α∗x > 0 for all x ∈ Y−, α∗x = 0 for all x ∈ X \ (Y+ ∪ Y−),

s∗(x)− f(x) = η∗ (x ∈ Y+), s∗(x)− f(x) = −η∗ (x ∈ Y−),

and ∑
x∈Y−

α∗x −
∑
x∈Y+

α∗x = C.

Proof: Problem (P )fu is equivalent to the quadratic program{
minimize 1

2
αT

XKX,XαX + Cη subject to

(αX , η) ∈ R|X| × R, −η1X ≤ KK,XαX − fX ≤ η1X .
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This is a feasible quadratic program whose objective function is bounded
from below (by 0) on the set of feasible solutions. The existence of a solution
(α∗X , η∗) respectively a solution (s∗, η∗) is implied by a well known theorem of
Frank–Wolfe [4, 18]. Uniqueness of a solution follows by a standard convexity
argument. By the Kuhn-Tucker theorem a solution (α∗X , η∗) is characterized
by the existence of nonnegative multipliers λ∗X , µ∗X such that

KX,Xα∗X + KX,X(λ∗X − µ∗X) = 0

respectively α∗X = µ∗X − λ∗X ,

(λ∗X + µ∗X)T 1X = C

and

(λ∗X)T (KX,Xα∗X − fX − η∗1X) = 0, (µ∗X)T (−KX,Xα∗X + fX − η∗1X) = 0.

Adding the last two equations leads to

−(µ∗X − λ∗X︸ ︷︷ ︸
=α∗X

)T KX,Xα∗X + fT
X(µ∗X − λ∗X︸ ︷︷ ︸

=α∗X

)− η∗ (λ∗X + µ∗X)T 1X︸ ︷︷ ︸
=C

= 0.

Thus

η∗ =
1

C
(α∗X)T (fX −KX,Xα∗X) =

1

C

∑
x∈X

α∗x(f(x)− s∗(x)).

This gives the characterization part of the theorem. Furthermore Y+ and
Y− can be defined just as in the proof of Theorem 1 since we assumed that
η∗ > 0, i. e. by

Y+ := {x ∈ X : λ∗x > 0, µ∗x = 0}, Y− := {x ∈ X : λ∗x = 0, µ∗x > 0}.

The theorem has been proven. 2

In the last part of Theorem 3 we had to exclude the case η∗ = 0. But one
can exactly characterize this situation.

Theorem 4 The second component η∗ of a solution (s∗, η∗) to (P )fu is zero
if and only if C ≥ ‖K−1

X,XfX‖1.

Proof: Because of the constraints in (P )fu the case η∗ = 0 can only occur
if s∗ interpolates f on X, i. e. s∗(·) =

∑
x∈X α∗xK(·, x) where α∗X = K−1

X,XfX .
The arguments in the proof of the characterization in Theorem 3 show that
(K−1

X,XfX , 0) solves the quadratic program equivalent to (P )fu if and only if

there exist nonnegative vectors λ∗X , µ∗X ∈ R|X| such that

K−1
X,XfX = µ∗X − λ∗X , (λ∗X + µ∗X)T 1X = C.
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Thus the solution of (P )fu has a positive second component if and only if
the system(

−I I
1T

X 1T
X

) (
λX

µX

)
=

(
K−1

X,XfX

C

)
,

(
λX

µX

)
≥

(
0
0

)
is not solvable. By the Farkas Lemma [3, 18] this is equivalent to the existence
of (z, δ) ∈ R|X| × R such that(

−I 1X

I 1X

) (
z
δ

)
≥

(
0
0

)
,

(
K−1

X,XfX

C

)T (
z
δ

)
< 0

respectively

−δ1X ≤ z ≤ δ1X , (K−1
X,XfX)T z + δC < 0. (7)

The following lemma will finish the proof of the theorem. 2

Lemma 1 Inequalities (7) have a solution (z, δ) iff C < ‖K−1
X,XfX‖1.

Proof: Let us first assume that C < ‖K−1
X,XfX‖1. Take an arbitrary δ > 0

and define z := −δsign(K−1
X,XfX) where the sign function acts componentwise

on a vector. Obviously (z, δ) solves (7). On the other hand suppose that (z, δ)
solves (7). Necessarily δ > 0. Since

δ(C − ‖K−1
XXfX‖1) = min

−δ1X≤y≤δ1X

(K−1
X,XfX)T y + δC ≤ (K−1

X,XfX)T z + δC < 0

we get the reverse direction. 2

We now consider the infinite–dimensional unrestricted problem.

Theorem 5 Let C > 0 be given and (s∗, η∗) be the unique solution of the
finite dimensional unrestricted problem (P )fu formulated in Theorem 3. We
assume η∗ to be positive respectively C to be sufficiently small. Then (s∗, η∗)
is the unique solution of the infinite dimensional unrestricted problem

(P )iu

{
minimize F (s, η) := 1

2
(s, s)K + Cη subject to

(s, η) ∈ K × R, −η ≤ s(x)− f(x) ≤ η (x ∈ X).

Proof: At the beginning we show that (s∗, η∗) solves (P )iu by showing that

F ′(s∗, η∗)[(s, η)− (s∗, η∗)] ≥ 0

for any pair (s, η) ∈ K × R feasible for (P )iu. Since η∗ is supposed to be
positive there exist subsets Y+, Y− ⊂ X such that

s∗(·) =
∑
x∈X

α∗xK(·, x)
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with α∗x < 0 for x ∈ Y+, α∗x > 0 for x ∈ Y−, α∗x = 0 for all x ∈ X \ (Y+ ∪ Y−),

s∗(x)− f(x) = η∗ (x ∈ Y+), s∗(x)− f(x) = −η∗ (x ∈ Y−),

and ∑
x∈Y−

α∗x −
∑
x∈Y+

α)x∗ = C.

The reproduction formula implies

F ′(s∗, η∗)[(s, η)− (s∗, η∗)] = (s∗, s− s∗)K + C(η − η∗)

=
∑

x∈Y+∪Y−

α∗x(K(·, x), s− s∗) + C(η − η∗)

=
∑

x∈Y+∪Y−

α∗x(s(x)− s∗(x)) + C(η − η∗)

=
∑
x∈Y+

α∗x(s(x)− f(x)− η∗) +
∑
x∈Y−

α∗x(s(x)− f(x) + η∗)

+ C(η − η∗)

=
∑
x∈Y+

α∗x︸︷︷︸
<0

(s(x)− f(x)− η︸ ︷︷ ︸
≤0

)

+
∑
x∈Y−

α∗x︸︷︷︸
>0

(s(x)− f(x) + η︸ ︷︷ ︸
≥0

)

+
[( ∑

x∈Y+

α∗x −
∑

x∈X−

α∗x

)
+ C︸ ︷︷ ︸

=0

]
(η − η∗)

≥ 0

which gives the desired result. The uniqueness again follows from a standard
convexity argument. 2

6 Monotonicity results

Before iterative techniques are considered, it will pay off to look at algorithms
that just add a single point to the active set. The following monotonicity
result will turn out to be very useful.

Lemma 2 Let sZ be the unique solution to the restricted problem for given
η > 0 on a subset Z ⊂ X.

1. If |sZ(x)−f(x)| ≤ η for all x ∈ X then sZ solves the restricted problem
on X.

2. Let Y := {x ∈ Z : |sZ(x)− f(x)| = η} be the active set for sZ. Assume
|sZ(x) − f(x)| > η for some x ∈ X \ Z, and let sY ∪{x} be the unique
solution of the restricted problem with the same η on Y ∪ {x}. Then

‖sY ∪{x}‖K > ‖sZ‖K .

9



Proof: First we show that sZ solves

(P )Y minimize F (s) :=
1

2
(s, s)K subject to s ∈ KX , ‖s− f‖∞,Y ≤ η

for any subset Y ⊂ X such that ‖sZ − f‖∞,Y ≤ η. This will prove the
first part of the theorem. Let Y+, Y− ⊂ Z be two sets as in Theorem 1, i. e.
sZ(·) =

∑
x∈Z αxK(·, x) with αx < 0 for all x ∈ Y+, αx > 0 for all x ∈ Y−,

sZ(x)− f(x) = η (x ∈ Y+), sZ(x)− f(x) = −η (x ∈ Y−)

and αx = 0 for all x ∈ Z \ (Y+ ∪ Y−). For any s ∈ KX with ‖s− f‖∞,Y ≤ η
we then conclude that

F ′(sZ)(s− sZ) = (sZ , s− sZ)K

=
∑

x∈Y+∪Y−

αx(K(·, x), s− sZ)

=
∑
x∈Y+

αx︸︷︷︸
<0

(s(x)− f(x)− η︸ ︷︷ ︸
≤0

) +
∑
x∈Y−

αx︸︷︷︸
>0

(s(x)− f(x) + η︸ ︷︷ ︸
≥0

)

≥ 0.

This shows that sZ solves the problem (P )Y . Now let Y be the set of active
constraints for sZ defined in the second part of the lemma. From the first
part we have

‖sZ‖K = inf
‖s−f‖∞,Z≤η

‖s‖K = inf
‖s−f‖∞,Y ≤η

‖s‖K

≤ inf
‖s−f‖∞,Y ∪{x}

‖s‖K = ‖sY ∪{x}‖K .

If ‖sZ‖K = ‖sY ∪{x}‖K then sZ and sY ∪{x} are both solutions to (P )Y , so
sZ = sY ∪{x} due to uniqueness in Theorem 1. This contradicts the fact that
|sZ(x)− f(x)| > η and |sY ∪{x}(x)− f(x)| ≤ η. 2

The above result is qualitative, but it can be quantified using an idea from
[2] in the interpolation case.

Theorem 6 1. Let Y ⊂ X and x ∈ X \ Y . If sY ∪{x} ∈ KY ∪{x} and
ŝ ∈ KY with sY ∪{x} = ŝ(y) for all y ∈ Y , then

‖sY ∪{x}‖2
K = ‖ŝ‖2

K +
(sY ∪{x} − ŝ(x))2

K(x, x)−KT
Y,{x}K

−1
Y,Y KY,{x}

. (8)

2. Let sZ be the unique solution to the restricted problem for given η > 0
and a subset Z ⊂ X, Y := {x ∈ Z : |sZ(x) − f(x)| = η} be the active
set for sZ. Assume |sZ(x) − f(x)| > η for some x ∈ X \ Z, and let
sY ∪{x} be the unique solution of the restricted problem with the same η
on Y ∪{x}. If ŝ ∈ KY is any function coinciding with sY ∪{x} on Y , we
have

‖sY ∪{x}‖2
K ≥ ‖sZ‖2

K +
(sY ∪{x} − ŝ(x))2

K(x, x)−KT
Y,{x}K

−1
Y,Y KY,{x}

. (9)

The denominator on the right hand side is positive.
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Proof: We have

sY ∪{x}(·) =
∑
y∈Y

αyK(·, y) + αxK(·, x), ŝ(·) =
∑
y∈Y

α̂yK(·, y).

Since sY ∪{x} and ŝ coincide on Y , we have

KY,Y α̂Y = KY,Y αY + αxKY,{x}

respectively
αY = α̂Y − αxK

−1
Y,Y KY,{x}.

Thus

‖sY ∪{x}‖2
K = αT

Y KY,Y αY + 2αxα
T
Y KY,{x} + α2

xK(x, x)

= α̂T
Y KY,Y α̂Y + α2

x[K(x, x)−KT
Y,{x}K

−1
Y,Y KY,{x}]

= ‖ŝ‖2
K + α2

x[K(x, x)−KT
Y,{x}K

−1
Y,Y KY,{x}].

On the other hand

sY ∪{x}(x)− ŝ(x) = αT
Y KY,{x} + αxK(x, x)− α̂T

Y KY,{x}

= αx[K(x, x)−KT
Y,{x}K

−1
Y,Y KY,{x}].

This leads to

‖sY ∪{x}‖2
K = ‖ŝ‖2

K +
(sY ∪{x} − ŝ(x))2

K(x, x)−KT
Y,{x}K

−1
Y,Y KY,{x}

.

Since

KY ∪{x},Y ∪{x} =

(
KY,Y KY,{x}
KT

Y,{x} K(x, x)

)
is positive definite and

0 <

(
K−1

Y,Y KY,{x}
−1

)T (
KY,Y KY,{x}
KT

Y,{x} K(x, x)

) (
K−1

Y,Y KY,{x}
−1

)
= K(x, x)−KT

Y,{x}K
−1
Y,Y KY,{x}

the denominator above is positive.

In the second part of the theorem ŝ is feasible for the restricted problem on
Y with the solution sZ . The theorem has been proven. 2

Readers familiar with the theory of interpolation by positive definite kernels
will note that the denominators in (8) and (9) coincide with the square of
the power function for interpolation by K on Y evaluated at x.

Theorem 6 shows that optimal progress in the Hilbert space norm is made
when the additional fractions in (8) and (9) are maximized. Current greedy
techniques [13] have only considered the numerator of these fractions. Thus
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it may improve greedy techniques to use the full fractions, provided that the
overall behaviour can be shown to improve when the Hilbert space norm of
the approximant is boosted up. This turns out to be true. More precisely,
if a function s ∈ KY is constructed that satisfies (1) on Y with a small η
and has ‖s‖K close to ‖f‖K , then s is close to f everywhere. This can be
quantified by the following result, though we have no idea about the size of
the occurring constants.

Lemma 3 Let Ω ⊂ Rd be a bounded domain, f ∈ K \ {0}, Y ⊂ Ω finite,
s ∈ KY with ‖s− f‖∞,Y ≤ η for some η > 0 and ‖s‖K ≥ ‖f‖K − ε for some
ε > 0. Then

‖f − s‖2
K ≤ 2‖f‖K(ε + CK(Y )η)

and
‖f − s‖∞,Ω ≤ ‖PY ‖∞,Ω

√
2‖f‖K(ε + CK(Y )η) + C∞(Y )η

for all sufficiently small positive ε, η. Here, the constants CK(Y ) and C∞(Y )
depend only on Ω, K and Y , but not on f, s, ε or η. Furthermore, the symbol
PY stands for the power function of standard kernel interpolation on Y .

Proof: Let s′ ∈ KY be the exact interpolant to f on Y . Since both s and s′

are based on Y and

‖s− s′‖∞,Y = ‖s− f‖∞,Y ≤ η,

there are constants CK(Y ) and C∞(Y ) depending only on Ω, K and Y such
that

‖s− s′‖K ≤ CK(Y )‖s− s′‖∞,Y ≤ CK(Y )η,
‖s− s′‖∞,Ω ≤ C∞(Y )‖s− s′‖∞,Y ≤ C∞(Y )η,

due to standard norm-equivalence arguments. We thus have

‖s′‖K ≥ ‖s‖K − ‖s− s′‖K ≥ ‖f‖K − (ε + CK(Y )η).

Since any t ∈ KY can be represented as t(·) =
∑

y∈Y βyK(·, y) the reproduc-
tion formula leads to the standard orthogonality result

(f − s′, t)K =
∑
y∈Y

βy(f − s′, K(·, y)) =
∑
y∈Y

αy[f(y)− s′(y)︸ ︷︷ ︸
=0

] = 0.

From this we get

‖f‖2
K = (f−s′, f)K +(f, s′)K = (f−s′, f−s′)K +(f, s′)K = ‖f−s′‖2

K +‖s′‖2
K ,

the standard minimum norm property. Now let the positive numbers ε, η be
so small, that

ε + CK(Y )η ≤ ‖f‖K . (10)
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Then we have

‖f − s‖2
K = ‖f − s′‖2

K + ‖s− s′‖2
K

= ‖f‖2
K − ‖s′‖2

K + ‖s− s′‖2
K

≤ ‖f‖2
K − [‖f‖K − (ε + CK(Y )η)]2 + CK(Y )2η2

= 2‖f‖K(ε + CK(Y )η)− (ε + CK(Y )η)2 + CK(Y )2η2

= 2‖f‖K(ε + CK(Y )η)− ε2 − 2CK(Y )εη

≤ 2‖f‖K(ε + CK(Y )η).

For the last part of the theorem we still assume ε, η to be so small that (10)
holds. Then we get

‖f − s‖∞,Ω ≤ ‖f − s′‖∞,Ω + ‖s− s′‖∞,Ω

≤ ‖PY ‖∞,Ω‖f − s′‖K + C∞(Y )η

≤ ‖PY ‖∞,Ω

√
2‖f‖K(ε + CK(Y )η) + C∞(Y )η

where we used the standard error bound

‖f − s′‖∞,Ω ≤ ‖PY ‖∞,Ω‖f − s′‖K

for kernel interpolation of all f ∈ K on Y . The factor PY is the power
function with

P 2
Y (x) = K(x, x)−KT

Y,{x}K
−1
Y,Y KY,{x}

in terms of (8). 2

Note that the function s in Lemma 3 is fairly general and need not be an
optimal solution to the restricted problem on Y . For the latter, there is a
stronger result.

Lemma 4 Let Ω ⊂ Rd be a bounded domain, f ∈ K \ {0}, Y ⊂ Ω finite,
s ∈ KY the unique solution of the restricted problem on Y for given η > 0.
Then

‖f − s‖2
K ≤ ‖f‖2

K − ‖s‖2
K + CK(Y )2η2

and

‖f − s‖∞,Ω ≤ ‖PY ‖∞,Ω

√
‖f‖2

K − ‖s‖2
K + C∞(Y )η

with the constants CK(Y ), C∞(Y ) defined in the proof of the previous lemma.

Proof: Again let s′ ∈ KY be the exact interpolant to f on Y . Then

‖f − s‖2
K = ‖f − s′‖2

K + ‖s− s′‖2
K

= ‖f‖2
K − ‖s′‖2

K + ‖s− s′‖2
K

≤ ‖f‖2
K − ‖s′‖2

K + CK(Y )2η2

≤ ‖f‖2
K − ‖s‖2

K + CK(Y )2η2,

13



since ‖s′‖K ≥ ‖s‖K due to the optimality of s. Similarly

‖f − s‖∞,Ω ≤ ‖PY ‖∞,Ω‖f − s′‖K + C∞(Y )η

= ‖PY ‖∞,Ω

√
‖f‖2

K − ‖s′‖2
K + C∞(Y )η

≤ ‖PY ‖∞,Ω

√
‖f‖2

K − ‖s‖2
K + C∞(Y )η.

2

7 Iterative Techniques

We now turn to the numerical solution of restricted or unrestricted quadratic
optimization problems as considered in the preceding sections. If the prob-
lems are large, we want to use iterative methods based on rather small sub-
problems. We start with the restricted problem for a given f ∈ K. Following
Lemma 3 we work on functions sk that are based on small active sets Yk in
the sense of (2) and try to make ‖sk‖K large while keeping ‖f − sk‖Yk

≤ η
small.

The following iterative technique is an adaptation of the greedy interpolation
algorithm in [13, 14].

Algorithm 1 Let X ⊆ Rd, K, f , and η > 0 be given. The greedy algo-
rithm for the solution of the restricted problem starts from some finite set
Z0 ⊆ X and iterates for k = 0, 1, . . . as follows:

1. Solve the restricted problem for fixed η on Zk by some function sk. Let
Yk := {x ∈ Zk : |sk(x)− f(x)| = η}.

2. If there is no x ∈ X with |sk(x)− f(x)| > η, the iteration stops and sk

solves the restricted problem for all of X.

3. Otherwise the iteration is repeated for Zk+1 := Yk ∪ {x}.

The efficient implementation of step 1 is treated later.

Theorem 7 If X is finite, the greedy algorithm stops after a finite number
of steps with the solution of the restricted problem on X.

Proof: Because of Lemma 2 we have ‖sk+1‖K < ‖sk‖K , k = 0, 1, . . ., as long
as the algorithm does not stop. Thus no subset in the sequence {Zk} can
occur twice. Since there are only finitely many subsets of X the algorithm
stops. Thus the algorithm stops with a set Z ⊂ X and a solution sZ of the
restricted problem on Z with |sZ(x)−f(x)| ≤ η for all x ∈ X. The first part
of Lemma 2 shows that sZ solves the restricted problem on X. 2

Note that the greedy algorithm discards all points of Zk \Yk at step k. In the
language of learning machines, the algorithm only memorizes those training
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samples that are “currently active support vectors” and forgets the others.
After recognizing and digesting a new sample x, one or several of the older
active samples may be discarded, even if they may be needed again some
time later. The monotonicity of ‖sk‖K still guarantees progress. If the total
number of training samples is finite, the full sample is mastered after a finite
and usually rather small number of learning steps based on active samples
only.

The actual progress of the algorithm crucially depends on the presented
samples, like the success of a learning student depends on the quality of
the teacher or trainer. If in step k the new training sample (x, f(x)) realizes
the maximum of the error ‖sk(x)− f(x)‖∞,X , one can speak of a “maximum
error” trainer, because the training always uses the case in which the student
would commit the largest error. In view of (8) and (9) this is not necessarily
the sample with the best progress in the sense of boosting up ‖sk‖K . One
should rather pick x to maximize the right–hand terms there. But this is
somewhat more complicated, and it is not clear whether there is a substantial
improvement justifying the additional work.

It is interesting to look at an infinite version of the above, simulating a
learning system with strongly limited memory and capabilities, while exposed
to a possibly infinite set of training samples presented sequentially one after
the other. This is called online learning in learning theory [15]. In such
a case, the greedy algorithm at stage k just ignores samples x ∈ X with
|sk(x)− f(x)| ≤ η and waits for an x that does not satisfy this inequality.

Theorem 8 If X is infinite, the greedy algorithm does not cycle and gener-
ates a sequence of functions sk with

‖sk‖K < ‖sk+1‖K < . . . ≤ ‖f‖K .

Proof: Follows from the monotonicity lemma. 2

Due to these results, the greedy algorithm always makes some progress in a
weak sense, though it forgets everything except its critical observation sets
Yk and the current function sk based on that set. Note that no assumption
about the actually presented samples is made so far. It seems to be hard
to prove that the progress of the algorithm is substantial, unless one makes
such an assumption.

But there is a simple modification to the algorithm that makes it finite even
for infinite X. It suffices to overdo its “training” somewhat, resulting in a
sharpened monotonicity behavior.

Algorithm 2 Let Ω ⊆ Rd, positive numbers η ≥ ε > 0 and a kernel K be
given, and consider an unknown function f : Ω → R which is in the native
space for K. The regularized greedy algorithm coincides with the standard
greedy algorithm, except that it uses the tolerance η− ε in step 1, while using
η in step 2.

15



Theorem 9 Irrespective of the training technique and the presented sample
set X ⊆ Ω ⊂ Rd, the regularized greedy algorithm performs only a finite
number of actual learning steps if Ω is compact and the kernel is continuous.
The maximal number of learning steps is determined by Ω ⊆ Rd, ‖f‖K , η, ε,
and K only. The sets Y occurring in the algorithm have a separation distance

q(Y ) :=
1

2
min

y,z∈Y,y 6=z
‖y − z‖2

that is uniformly bounded below by a positive constant.

Proof: Since all sk have ‖sk‖K ≤ ‖f‖K , they are equicontinuous, and so are
the f − sk. This is a standard fact from reproducing kernel Hilbert space
theory, if the kernel is continuous and the domain is compact. The proof
uses the reproduction property and considers

|f(x)− f(y)|2 = |(K(x, ·)−K(y, ·), f)K |2
≤ ‖K(x, ·)−K(y, ·)‖2

K‖f‖2
K

= (K(x, x)−K(y, x) + K(y, y)−K(x, y))‖f‖2
K

to prove that all bounded sets of functions consist of equicontinuous func-
tions. Because |f−s| ≤ η−ε on Y and |(f−s)(x)| > η, the uniform equicon-
tinuity of all f − s occurring in the algorithm implies dist (x, Y ) ≥ δ > 0
uniformly. Thus all Y occurring in the iteration have a separation distance
uniformly bounded from below. Then there is a uniform upper limit M to
the size of Y , and one can use a standard topology on ΩM to conclude that
the set of all such Y is compact. If the difference ‖s̃‖K−‖s‖K is positive and
uniformly bounded below by a positive constant throughout the algorithm,
the theorem follows.

It remains to prove that the difference ‖s̃‖K−‖s‖K is positive and uniformly
bounded below by a positive constant. Assume a sequence of Yk, sk and xk

such that the above difference goes to zero. We can extract a subsequence
such that the Yk converge to some Y with a fixed number of points, the xk

converge to some x and the values of sk on Yk converge. In fact, the latter
differ from values of f only by at most η, and the values of f and all sk are
uniformly bounded due to the standard bound

u(x)2 = (u, K(x, ·))2
K ≤ K(x, x)‖u‖2

K ≤ K(x, x)‖f‖2
K

for all u with ‖u‖K ≤ ‖f‖K .

Let s be the interpolant defined on Y that attains these values on Y . Since Y
is nondegenerate and since in this case the solution of a kernel interpolation
problem depends continuously on the data locations and the data, we know
that s − sk converges to zero everywhere, including the point x. In fact,
convergence of the data on Y implies convergence of coefficients, and this in
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turn implies convergence everywhere. Furthermore, we know that the ‖sk‖K

converge to ‖s‖K and that s satisfies the necessary and sufficient conditions
for being the solution of the restricted problem on Y . In fact, the sign
conditions on the coefficients will not be violated in the limit, when the
values of the sk converge on Y .

Now let s̃k solve the restricted problem on Yk ∪ {xk}. Due to convergence
of the Yk to Y and xk to x with the values of the sk converging to those of
s on Y and x, we have convergence of s̃k to the solution s̃ of the restricted
problem on Y ∪ {x}, and ‖s̃k‖K converges to ‖s̃‖K . Thus

‖s̃‖K = lim ‖s̃k‖K = lim ‖sk‖K = ‖s‖K

which contradicts the monotonicity lemma, since we have |f − s| ≤ η − ε on
Y and |s(x)− f(x)| ≥ η. 2

The regularized greedy algorithm will always discard training data that are
close to its active data. Thus it feeds only on new and interesting cases,
and after a finite number of actual learning steps and with a compact set of
conceivable inputs, there is nothing it can learn to improve its performance.

The regularized greedy algorithm still works if the “real” function f is not
constant during the possibly infinite sampling and learning process. It will
always adapt to any stationary situation after a finite number of steps.

Corollary 1 If the regularized greedy algorithm is executed with ε = η, then
it works with exact interpolation on small subsets and still shares the same
properties.

The single steps then are computationally much more efficient, but they do
not guarantee optimal complexity. because there will be no data points dis-
carded through the process. Therefore this strategy only pays off at startup
time, when the process is not anywhere near its complexity limits.

8 An Efficient Quadratic Solver

We now exploit the special features of the finite–dimensional restricted prob-
lem on active sets in order to carry out the iteration steps of the greedy
method efficiently.

Let A ∈ Rn×n be symmetric and positive definite, b ∈ Rn and η > 0. Consider
the quadratic programming problem

(P)


minimize f(x) := 1

2
xT Ax on

M :=

{
x ∈ Rn :

(
A

−A

)
x ≥

(
b− η · 1

−b− η · 1

)}
.
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We would like to adapt the active set method of quadratic programming to
this problem. In particular we will show that it is only necessary to solve a
small linear system of equations at each iteration, usually the main work to
be done.

Let aT
i denote the i-th row of A and bi the i-th component of b, furthermore

let aij be the entry in row i and column j. Thus

A = (aij) =

 aT
1
...

aT
n

 = ( a1 · · · an ).

For J ⊆ I := {1, . . . , n} the matrix AJ is the |J | × n-matrix with rows aT
j ,

j ∈ J . Because of the symmetry of A the matrix AT
J ist the n × |J |-matrix

with columns aj, j ∈ J . Similarly, for J, K ⊆ I let AJ,K be the |J | × |K|-
matrix with entries (ajk)(j,k)∈J×K .

We now describe one step of the active set method of quadratic pro-
gramming applied to the special problem (P). Note that we fix the index set
I := {1, . . . , n}.

(0) Let (x, I−, I+) ∈ M × I × I be a triple such that 1

aT
i x− bi = −η (i ∈ I−), aT

i x− bi = +η (i ∈ I+).

Obviously (due to η > 0) we have:

• I− ∩ I+ = ∅,
• {ai}i∈I−∪I+ are linearly independent.

(1) Let (p, y) ∈ Rn × Rn be a pair consisting of the solution p and and
a vector y such that yI− , yI+ are optimal multipliers for the equality
constrained quadratic program{

minimize f(x + p) = f(x) + (Ax)T p + 1
2
pT Ap subject to

AI−p = 0, AI+p = 0.

Thus one has to solve the linear system of equations A −AT
I− AT

I+

−AI− 0 0
AI+ 0 0

  p
yI−

yI+

 = −

 Ax
0
0

 .

Let J := I \ (I− ∪ I+). The first equation leads to

pJ = −xJ , pI− = yI− − xI− , pI+ = −xI+ − yI+ . (11)

1We do not require that |aT
i x − bi| < η for i ∈ I \ (I− ∪ I+). Thus, at the beginning,

I− = ∅ or I+ = ∅ are possible.
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The last two equations AI−p = 0, AI+p = 0 can be written as(
AI−,I− AI−,I+ AI−,J

AI+,I− AI+,I+ AI+,J

)  pI−

pI+

pJ

 =

(
0
0

)
.

So we get (yI− , yI+) as a solution to(
AI−,I− AI−,I+

AI+,I− AI+,I+

) (
yI−

−yI+

)
=

(
AI−x
AI+x

)
.

Observe that the coefficient matrix is symmetric and positive definite.
When (yI− , yI+) is known, the direction p can be computed from (11).
Formally we define yJ := 0.

(2) If x + p ∈ M :

– Compute x+ := x + p.

– Determine
l− ∈ I− with yl− = mini∈I− yi,
l+ ∈ I+ with yl+ = mini∈I+ yi.

– If min(yl− , yl+) ≥ 0 respectively yI− ≥ 0 and yI+ ≥ 0, then:

∗ STOP: x∗ := x+ solves (P), I∗ := I− ∪ I+ is the correspond-
ing set of active constraints and yI− , yI+ the corresponding
nonnegative multipliers.

– Else:

∗ If yl− < yl+ then I−+ := I− \ {l−}, I+
+ := I+

else I−+ := I−, I+
+ := I+ \ {l+}.

Else (i. e. x + p 6∈ M):

– Compute the maximal steplength
s(x, p) := sup{t ≥ 0 : x + tp ∈ M}. This can be done in the
following way. Compute

s−(x, p) := min
{bi − η − aT

i x

aT
i p

: i ∈ I \ I−, aT
i p < 0

}
,

s+(x, p) := min
{bi + η − aT

i x

aT
i p

: i ∈ I \ I+, aT
i p > 0

}
,

and s(x, p) := min(s−(x, p), s+(x, p)). Note that s(x, p) ∈ [0, 1)
(since x ∈ M and x + p 6∈ M).

– If s(x, p) = s−(x, p):

∗ Let

r− ∈ R− :=
{

i ∈ I \ I− : aT
i p < 0,

bi − η − aT
i x

aT
i p

= s−(x, p)
}

and put I−+ := I− ∪ {r−}, I+
+ := I+.
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– Else (i. e. s(x, p) = s+(x, p)):

∗ Let

r+ ∈ R+ :=
{

i ∈ I \ I+ : aT
i p > 0,

bi + η − aT
i x

aT
i p

= s+(x, p)
}

and put I−+ := I−, I+
+ := I+ ∪ {r+}.

– Compute x+ := x + s(x, p)p.

(3) Make the update (x, I−, I+) := (x+, I−+ , I+
+ ) and go to (1).

Remark: We have

f(x + tp) = f(x) + t(Ax)T p +
1

2
t2pT Ap

= f(x) + t[−Ap + AT
I−yI− − AT

I+yI+ ]T p +
1

2
t2pT Ap

= f(x) + t
(1

2
t− 1

)
pT Ap.

Thus the decrease along the ray {x + tp : t ≥ 0} is maximal for t = 1.
Therefore it is reasonable to take x+ := x + p as the next iterate if it is
feasible. Since the steplength is either t = 1 or t = s(x, p) ∈ [0, 1) we have
f(x+) ≤ f(x). There is no progress if and only if p = 0 or s(x, p) = 0. Let
us suppose that p = 0 and one of the multipliers yi, i ∈ I− ∪ I+, is negative
(otherwise the algorithm stops). An index with a negative multiplier will be
removed from I− ∪ I+. In the next step the direction p+ will not be equal
to zero due to the linear independence of {ai}i∈I−∪I+ . If s(x, p) = 0, either
s−(x, p) = 0 or s+(x, p) = 0. If for instance s−(x, p) = 0 there exists an index
i ∈ I \ I− with aT

i x− bi = −η. So in this case I− does not contain all indices
for which the first set of constraints is active. 2

From the second author, a simple Matlab function implementing the above
algorithm for the solution of (P) is available on request.

9 Examples

Example. Figure 1 shows the behavior of the greedy algorithm for approx-
imating the peaks function in MATLAB at error level η = 0.01 using up to
10000 random data. The algorithm is run in “online” form, ignoring data
where the error is already below η, and performing an update step other-
wise. Energy is measured as (s, s)K , while complexity stands for the number
of points in Y±. The term iteration stands for an update step of the learning
algorithm when confronted with an undiscardable sample. Note the strong
correspondence between energy and complexity, while the algorithm builds
up its knowledge. After some 100 samples, the algorithm tends to discard the
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Figure 1: Typical online learning algorithm behavior

majority of the new samples. It performs about 400 actual learning steps to
master the function at that error level. From that point on it only very rarely
accepts further samples it cannot deal with, and it works at a complexity of
about 35 support vectors throughout.

Example. Figure 2 shows the behaviour of the technique of the previous
chapter when applied iteratively on 22784 training samples with 16 variables
describing input data for estimating the price of houses from the 1990 US
census2 data.
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Figure 2: Greedy algorithm for census data
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