Limits of Bernstein-Bézier Curves for Periodic Control Nets

Dong-xu Qi and Robert Schaback

Abstract

If n given control points $b_{0}, \ldots, b_{n-1} \in \mathbb{R}^{d}$ are repeated periodically by $b_{j+k n}=b_{j}$ for all $k \in \mathbb{Z}$, the uniform limit of the Bernstein-Bézier polynomial curves of degree r with control points b_{0}, \ldots, b_{r} for $r \rightarrow \infty$ is a Poisson curve (after a suitable reparametrization). This fact reveals some interesting self-similar structures in case of regular n-gons in the plane.

1 Introduction

Let $n \geq 1$ control points $b_{0}, \ldots, b_{n-1} \in \mathbb{R}^{d}$ be given. These control points are repeated by

$$
b_{j+k n}:=b_{j} \text { for } 0 \leq j \leq n-1, \text { and all } k \in \mathbb{Z}
$$

to form an infinite periodic sequence. The centroid of the points is denoted by $\bar{b}:=\frac{1}{n} \sum_{j=0}^{n-1} b_{j}$, and the Bernstein polynomials of degree r are

$$
\beta_{j}^{(r)}(t):=\binom{r}{j}(1-t)^{r-j} t^{j}, \quad 0 \leq j \leq r, t \in[0,1] .
$$

Then we consider the Bernstein-Bézier polynomials [1],[2],[3]

$$
f_{r}(t):=\sum_{j=0}^{r} b_{j} \beta_{j}^{(r)}(t)
$$

for large degrees r and investigate the behavior of $f_{r}(t)$ in the convex hull of the control points, when r tends to infinity. We want to characterize all limit points of the curves $f_{r}(t)$, as shown by figures 1 and 2 for $n=4$ and $n=7$ points forming a regular polygon in the plane.

[^0]
2 Convergence to the centroid

First we treat the case of a fixed argument $t \in(0,1)$.
Theorem. For all $t \in(0,1)$ the centroid \bar{b} is the limit

$$
\lim _{r \rightarrow \infty} f_{r}(t)=\bar{b}
$$

Proof: For fixed $t \in(0,1)$ we perform the de Casteljau construction:

$$
\begin{array}{rlrl}
b_{j}^{(0)} & :=b_{j}, & j \in \mathbb{Z} \\
b_{j}^{(r)}(t) & :=(1-t) b_{j}^{(r-1)}(t)+t b_{j+1}^{(r-1)}(t), & & j \in \mathbb{Z}, \quad r \geq 1 .
\end{array}
$$

Then, for fixed r and t, the $b_{j}^{(r)}(t)$ are also periodic with respect to j. Furthermore, any n subsequent points of the $b_{j}^{(r)}(t)$ will have the centroid \bar{b}.

Figure 1: $n=4$ points oriented clockwise

We now write the de Casteljau steps [5] in matrix notation [4]. If E is the $d \times d$ unit matrix, then the $(n d) \times(n d)$-matrix

$$
T:=\left(\begin{array}{ccccc}
t E & (1-t) E & 0 & \cdots & 0 \\
0 & t E & (1-t) E & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & t E & (1-t) E \\
(1-t) E & 0 & 0 & 0 & t E
\end{array}\right)
$$

has the property

$$
T\left(\begin{array}{c}
b_{0}^{(r-1)} \\
\vdots \\
b_{n-1}^{(r-1)}
\end{array}\right)=\left(\begin{array}{c}
b_{0}^{(r)} \\
\vdots \\
b_{n-1}^{(r)}
\end{array}\right)=T^{r}\left(\begin{array}{c}
b_{0} \\
\vdots \\
b_{n-1}
\end{array}\right)
$$

Figure 2: $n=7$ points oriented clockwise

Now let S be the subspace of $I R^{n d}$ containing all sets of n vectors c_{0}, \ldots, c_{n-1} in \mathbb{R}^{d} with $\sum_{i=0}^{n-1} c_{i}=0$. This subspace contains all vectors

$$
\left(\begin{array}{c}
b_{0}^{(r)}(t)-\bar{b} \\
\vdots \\
b_{n-1}^{(r)}(t)-\bar{b}
\end{array}\right)=T^{r}\left(\begin{array}{c}
b_{0}-\bar{b} \\
\vdots \\
b_{n-1}-\bar{b}
\end{array}\right)
$$

for all $r \geq 0$. The whole de Casteljau process, when applied to the differences to the centroid, stays in the subspace S.

Now let λ be an eigenvalue of T with eigenvector $\left(c_{0}, \ldots, c_{n-1}\right)^{T}$, and we again extend periodically by $c_{j+k n}:=c_{j}$ for $0 \leq j \leq n-1$ and all $k \in \mathbb{Z}$. Then

$$
t c_{i}+(1-t) c_{i+1}=\lambda c_{i}
$$

and

$$
c_{i+1}=\frac{\lambda-t}{1-t} c_{i}=\left(\frac{\lambda-t}{1-t}\right)^{i+1} c_{0}
$$

Because of periodicity, $c_{n}=c_{0}$ holds and implies

$$
\left(\frac{\lambda-t}{1-t}\right)^{n}=1
$$

The eigenvalue $\lambda=1$ can occur only with eigenvectors satisfying $c_{i+1}=c_{i}=$ c_{0} for all i. This is not possible for nonzero vectors in the subspace S. The other eigenvalues are of the form

$$
\lambda=t \cdot 1+(1-t) \cdot \omega_{n}
$$

with a complex n-th root of unity $\omega_{n} \neq 1$. They must necessarily lie in the interior of the unit circle, because they are nontrivial convex combinations of two different roots of unity.

This proves that T as a mapping on S has only eigenvalues λ with $|\lambda|<1$. Therefore

$$
\left(\begin{array}{c}
b_{0}^{(r)}(t)-\bar{b} \\
\vdots \\
b_{n-1}^{(r)}(t)-\bar{b}
\end{array}\right)=T^{r}\left(\begin{array}{c}
b_{0}-\bar{b} \\
\vdots \\
b_{n-1}-\bar{b}
\end{array}\right)
$$

converges to zero. The first component is $f_{r}(t)-\bar{b}$, and the assertion of the theorem follows. QED.

For later use, we prove a stronger result:
Theorem. For points $t_{r}=\tau_{r} / r$ with $t_{r} \rightarrow 0$ and $\tau_{r} \rightarrow \infty$ for $r \rightarrow \infty$,

$$
\lim _{r \rightarrow \infty} f_{r}\left(t_{r}\right)=\bar{b} .
$$

Proof. A direct refinement of the previous proof yields

$$
\left\|f_{r}(t)-\bar{b}\right\| \leq \max _{0 \leq i \leq n-1}\left\|b_{i}-\bar{b}\right\| \cdot\|T(t)\|^{r}
$$

and, since the eigenvalues of $T^{T}(t) T(t)$ are

$$
\lambda_{k}(t)=t^{2}+(1-t)^{2}+2 t(1-t) \cos (2 \pi k / n), \quad 0 \leq k \leq n-1,
$$

each eigenvalue occurring d times, the Euclidean norm of $T(t)$ is bounded by $1-\alpha_{n} t$ for small values of t, where $\alpha_{n}=\mathcal{O}(1 / n)$ for $n \rightarrow \infty$. Inserting t_{r} as defined above we get

$$
\left\|f_{r}\left(t_{r}\right)-\bar{b}\right\| \leq C\left(1-\alpha_{n} \tau_{r} / r\right)^{r}
$$

for all $r \geq 1$ with a constant C, and this bound tends to zero. QED.

3 Convergence to a Poisson curve

The previous section showed that variable arguments $t_{r} \leq \tau / r$ for some fixed value of $\tau \in(0, \infty)$ should be considered next.

Theorem. The "Poisson" curve

$$
p(\tau):=e^{-\tau} \sum_{j=0}^{\infty} b_{j} \tau^{j} / j!
$$

is the limit of reparametrized Bernstein-Bézier curves, i.e.:

$$
\lim _{r \rightarrow \infty} f_{r}(\tau / r)=p(\tau), \quad \tau \in[0, \infty)
$$

Furthermore,

$$
\lim _{\tau \rightarrow \infty} p(\tau)=\bar{b}
$$

Proof: Stirling's formula gives

$$
\lim _{r \rightarrow \infty} \beta_{j}^{(r)}(\tau / r)=\lim _{r \rightarrow \infty} \frac{r!}{j!(r-j)!} \frac{(r-\tau)^{r-j} \tau^{j}}{r^{r}}=e^{-\tau} \tau^{j} / j!
$$

This proves $\lim _{r \rightarrow \infty} f_{r}(\tau / r)=p(\tau)$, because the b_{j} are uniformly bounded and the series for p converges nicely. This part of the proof resembles the fact that the binomial probability distribution, occurring as a weight in the Bernstein-Bézier polynomial curves, converges to the Poisson distribution.

Now we still have to prove convergence of the Poisson curve $p(\tau)$ to the centroid for $\tau \rightarrow \infty$. For this we define the shifted Poisson curves

$$
p_{j}(\tau):=e^{-\tau} \sum_{m=0}^{\infty} b_{j+m} \tau^{m} / m!
$$

for all $j \in \mathbb{Z}$, using periodicity with respect to j. Then, by easy calculation,

$$
p_{j}^{\prime}(\tau)=p_{j+1}(\tau)-p_{j}(\tau)
$$

for all $j \in \mathbb{Z}$, and

$$
p_{n}(\tau)=p_{0}(\tau) .
$$

With the differential operator $D:=d / d \tau$ we find $(D+1) p_{j}=p_{j+1}$ and

$$
\begin{aligned}
(D+1)^{n} p_{j} & =(D+1)^{j}(D+1)^{n-j} p_{j}=(D+1)^{j} p_{n} \\
& =(D+1)^{j} p_{0}=p_{j}
\end{aligned}
$$

for all j. Thus all p_{j} satisfy the same linear constant coefficient differential equation of order n with characteristic polynomial

$$
P_{n}(x)=(x+1)^{n}-1 .
$$

The roots of P_{n} are of the form $x_{k}=-1+\omega_{n}^{k}$, where ω_{n} is a n-th root of unity, i.e.:

$$
\omega_{n}^{k}:=\exp \frac{2 \pi i k}{n}, \quad 0 \leq k \leq n-1
$$

With certain complex coefficients $\alpha_{j k}$ the functions p_{j} have the form

$$
\begin{aligned}
p_{j}(\tau) & =\sum_{k=0}^{n-1} \alpha_{j k} \exp \left(\left(-1+\omega_{n}^{k}\right) \tau\right) \\
& =e^{-\tau} \sum_{k=0}^{n-1} \alpha_{j k} \exp \left(\frac{2 \pi i k}{n} \tau\right),
\end{aligned}
$$

and all terms except the one for $k=0$ must go to zero for $\tau \rightarrow \infty$, because $-1+\omega_{n}^{k}$ has a negative real part for $k \neq 0$.

This implies $\lim _{\tau \rightarrow \infty} p_{j}(\tau)=\alpha_{j 0}$ and

$$
\begin{aligned}
\lim _{\tau \rightarrow \infty} p_{j}^{\prime}(\tau) & =0=\lim _{\tau \rightarrow \infty} p_{j+1}(\tau)-\lim _{\tau \rightarrow \infty} p_{j}(\tau) \\
& =\alpha_{j+1,0}-\alpha_{j, 0}
\end{aligned}
$$

Because of $0=\sum_{j=0}^{n-1} p_{j}^{\prime}(\tau)$ and $n \cdot \bar{b}=\sum_{j=0}^{n-1} p_{j}(0)$ we know that $n \cdot \bar{b}=$ $\sum_{j=0}^{n-1} p_{j}(\tau)$ holds for all τ. But in the limit $\tau \rightarrow \infty$ all the values $p_{j}(\infty)=\alpha_{j, 0}$ are equal, which proves the assertion. QED.

Theorem If $z \in \mathbb{R}^{d}$ is an accumulation point of a sequence $f_{r}\left(t_{r}\right)$ with $t_{r} \in[0,1 / 2]$, then either $z=\bar{b}$ or $z=p(\tau)$ for some $\tau \in[0, \infty)$.

Proof: If we rule out the trivial case $z=\bar{b}$, we can assume $t_{r}=\tau_{r} / r$ with $\tau_{r} \leq \tau>0$. On $[0, \tau]$, the curves $g_{r}(t)=f_{r}(t / r)$ are continuously differentiable with uniformly bounded derivatives, because the norm of

$$
g_{r}^{\prime}(t)=\frac{1}{r} r \sum_{j=0}^{\infty} \beta_{j}^{(r-1)}(t)\left(b_{j+1}-b_{j}\right)
$$

is bounded by $\max _{0<j<n}\left\|b_{j+1}-b_{j}\right\|$. The convergence of g_{r} to the Poisson curve p on $[0, \tau]$ thus is uniform, and the assertion follows. QED.

Remark: The limit points of $f_{j+k n}(1-\tau /(j+k n))$ for $k \rightarrow \infty$ and $0 \leq$ $j \leq n-1$ fixed are points of the "backward" and "shifted" Poisson curves \hat{p}_{j} defined by

$$
\begin{aligned}
& \hat{p}_{j}(\tau):=e^{-\tau} \sum_{m=0}^{\infty} b_{j-m} \tau^{m} / m! \\
& p_{j}(\tau):=e^{-\tau} \sum_{m=0}^{\infty} b_{j+m} \tau^{m} / m!
\end{aligned}
$$

where we used the periodicity and added the shifted Poisson curves p_{j}. The union of these two sets of Poisson curves, together with their limit \bar{b}, make up the set of all limit points of the backward and shifted Bernstein-Bézier curves

$$
\begin{aligned}
& \hat{b}_{r, j}(t):=\sum_{m=0}^{\infty} b_{j-m} \beta_{m}^{(r)}(t), \quad 0 \leq j<n, \\
& b_{r, j}(t):=\sum_{m=0}^{\infty} b_{j+m} \beta_{m}^{(r)}(t), \quad 0 \leq j<n,
\end{aligned}
$$

for $r \rightarrow \infty$.

Figure 3: $n=5$ points, all of the curves
Figure 3 shows these curves for a regular pentagon in the plane. To avoid numerical instabilities for large degrees r, we use the de Casteljau construction in the form

$$
b_{r, j}(t)=(1-t) b_{r-1, j}(t)+t b_{r-1, j+1}(t)
$$

with three loops over j, t, and r (innermost to outermost). This requires storage of $n+1$ discretized curve images of equal degree, starting with the constant curves b_{j} of degree zero for $j=0, \ldots, n$.

4 Regular polygons in the plane

Now let b_{0}, \ldots, b_{n-1} be the vertices of the standard regular n-gon in the complex plane, i.e.: $b_{j}=\omega_{n}^{j}=\exp (2 \pi i j / n)$ for $0 \leq j<n$. By easy calculation, the Poisson curves for this configuration are the logarithmic spirals

$$
\begin{gathered}
p_{j}(\tau)=\omega_{n}^{j} e^{\tau\left(\omega_{n}-1\right)} \\
\hat{p}_{j}(\tau)=\omega_{n}^{j} e^{\tau\left(1 / \omega_{n}-1\right)}
\end{gathered}
$$

Figure 4: $n=4$ points, Poisson curves plus squares at intersection points
The curves p_{j} and \hat{p}_{j+1} first intersect in $z_{j}=p_{j}\left(\tau_{n}\right)=\hat{p}_{j+1}\left(\tau_{n}\right)$ with

$$
\tau_{n}=\frac{1}{2} \frac{2 \pi / n}{\sin (2 \pi / n)},
$$

and z_{0}, \ldots, z_{n-1} form another regular n-gon. This smaller polygon contains a complete scaled copy of the contents of the original n-gon, including the Poisson curves on $\left[\tau_{n}, \infty\right)$, because these satisfy simple functional equations like

$$
p_{j}(\tau+\sigma)=p_{j}(\tau) \cdot p_{0}(\sigma) .
$$

This gives a full account of the self-similarity of the structures in figures 4 and 5 , showing the set of Poisson curves for $n=4$ and $n=12$, together with the polygons obtained by connecting the k-th intersection points of Poisson curves.

Figure 5: $n=12$ points, Poisson curves plus polygons at intersection points

References

[1] Bézier, P. Définition numérique des courbes et surfaces, Automatisme 11 (1966), 625-263
[2] Bézier, P. Définition numérique des courbes et surfaces (II), Automatisme 12 (1967), 17-21
[3] Boehm, W., G. Farin, and J. Kahmann, A survey of curve and surface methods in CAGD, Comput. Aided Geom. Design 1 (1984) 1-60
[4] Cavaretta, A. S., Micchelli, C. A., The Design of Curves and Surfaces by Subdivision Algorithms, in: T. Lyche, L. L. Schumaker (eds.) Mathematical Methods in Computer Aided Geometric Design, Academic Press, Boston, 1989, 115-153
[5] de Casteljau, P., Outilage methodes calcul, Andre Citroën Automobiles SA, Paris 1959

Author's addresses:

Dong-xu Qi, Computer and CAD Research Center, North China University of Technology, Beijing 100041, People's Republic of China.

Robert Schaback, Institut für Numerische und Angewandte Mathematik der Universität Göttingen, Lotzestraße 16-18, D-3400 Göttingen, Federal Republic of Germany.

[^0]: ${ }^{0}$ File : usr/nam/rschaba/tex/fertig/Qi.tex, TEXed : February 4, 1992, Status : submitted

