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Abstract: If n given control points b

0

; . . . ; b

n�1

2 IR

d

are repeated periodi-

cally by b

j+kn

= b

j

for all k 2 ZZ, the uniform limit of the Bernstein{B�ezier

polynomial curves of degree r with control points b

0

; . . . ; b

r

for r ! 1 is a

Poisson curve (after a suitable reparametrization). This fact reveals some

interesting self{similar structures in case of regular n{gons in the plane.

1 Introduction

Let n � 1 control points b

0

; . . . ; b

n�1

2 IR

d

be given. These control points

are repeated by

b

j+kn

:= b

j

for 0 � j � n� 1; and all k 2 ZZ

to form an in�nite periodic sequence. The centroid of the points is denoted

by

�

b
:=

1

n

P

n�1

j=0

b

j

, and the Bernstein polynomials of degree r are

�

(r)

j

(t) :=

�

r

j

�

(1� t)

r�j

t

j

; 0 � j � r; t 2 [0; 1]:

Then we consider the Bernstein{B�ezier polynomials [1],[2],[3]

f

r

(t) :=

r

X

j=0

b

j

�

(r)

j

(t)

for large degrees r and investigate the behavior of f

r

(t) in the convex hull of

the control points, when r tends to in�nity. We want to characterize all limit

points of the curves f

r

(t), as shown by �gures 1 and 2 for n = 4 and n = 7

points forming a regular polygon in the plane.

0
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2 Convergence to the centroid

First we treat the case of a �xed argument t 2 (0; 1).

Theorem. For all t 2 (0; 1) the centroid

�

b
is the limit

lim

r!1

f

r

(t) =

�

b
:

Proof: For �xed t 2 (0; 1) we perform the de Casteljau construction:

b

(0)

j

:= b

j

; j 2 ZZ

b

(r)

j

(t) := (1 � t)b

(r�1)

j

(t) + tb

(r�1)

j+1

(t); j 2 ZZ; r � 1:

Then, for �xed r and t, the b

(r)

j

(t) are also periodic with respect to j. Fur-

thermore, any n subsequent points of the b

(r)

j

(t) will have the centroid

�

b
.

Figure 1: n = 4 points oriented clockwise
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We now write the de Casteljau steps [5] in matrix notation [4]. If E is the

d� d unit matrix, then the (nd)� (nd){matrix

T :=

0

B

B

B

B

B

@

tE (1� t)E 0 . . . 0

0 tE (1� t)E . . . 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 0 tE (1 � t)E

(1 � t)E 0 0 0 tE

1

C

C

C

C

C

A

has the property

T

0

B

@

b

(r�1)

0

.

.

.

b

(r�1)

n�1

1

C

A

=

0

B

@

b

(r)

0

.

.

.

b

(r)

n�1

1

C

A

= T

r

0

B

@

b

0

.

.

.

b

n�1

1

C

A

:

Figure 2: n = 7 points oriented clockwise
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Now let S be the subspace of IR

nd

containing all sets of n vectors c

0

; . . . ; c

n�1

in IR

d

with

P

n�1

i=0

c

i

= 0. This subspace contains all vectors

0

B

@

b

(r)

0

(t)�

�

b

.

.

.

b

(r)

n�1

(t)�

�

b

1

C

A

= T

r

0

B

@

b

0

�

�

b

.

.

.

b

n�1

�

�

b

1

C

A

for all r � 0. The whole de Casteljau process, when applied to the di�erences

to the centroid, stays in the subspace S.

Now let � be an eigenvalue of T with eigenvector (c

0

; . . . ; c

n�1

)

T

, and we

again extend periodically by c

j+kn

:= c

j

for 0 � j � n� 1 and all k 2 ZZ:

Then

tc

i

+ (1� t)c

i+1

= �c

i

;

and

c

i+1

=

�� t

1� t

c

i

=

�

�� t

1� t

�

i+1

c

0

:

Because of periodicity, c

n

= c

0

holds and implies

�

� � t

1 � t

�

n

= 1:

The eigenvalue � = 1 can occur only with eigenvectors satisfying c

i+1

= c

i

=

c

0

for all i. This is not possible for nonzero vectors in the subspace S. The

other eigenvalues are of the form

� = t � 1 + (1 � t) � !

n

with a complex n{th root of unity !

n

6= 1. They must necessarily lie in the

interior of the unit circle, because they are nontrivial convex combinations

of two di�erent roots of unity.

This proves that T as a mapping on S has only eigenvalues � with j�j < 1.

Therefore

0

B

@

b

(r)

0

(t)�

�

b

.

.

.

b

(r)

n�1

(t)�

�

b

1

C

A

= T

r

0

B

@

b

0

�

�

b

.

.

.

b

n�1

�

�

b

1

C

A
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converges to zero. The �rst component is f

r

(t)�

�

b
, and the assertion of the

theorem follows. QED.

For later use, we prove a stronger result:

Theorem. For points t

r

= �

r

=r with t

r

! 0 and �

r

!1 for r!1,

lim

r!1

f

r

(t

r

) =

�

b
:

Proof. A direct re�nement of the previous proof yields

kf

r

(t)�

�

b
k � max

0�i�n�1

kb

i

�

�

b
k � kT (t)k

r

;

and, since the eigenvalues of T

T

(t)T (t) are

�

k

(t) = t

2

+ (1� t)

2

+ 2t(1� t) cos(2�k=n); 0 � k � n� 1;

each eigenvalue occurring d times, the Euclidean norm of T (t) is bounded by

1��

n

t for small values of t, where �

n

= O(1=n) for n!1. Inserting t

r

as

de�ned above we get

kf

r

(t

r

)�

�

b
k � C(1� �

n

�

r

=r)

r

for all r � 1 with a constant C, and this bound tends to zero. QED.

3 Convergence to a Poisson curve

The previous section showed that variable arguments t

r

� �=r for some �xed

value of � 2 (0;1) should be considered next.

Theorem. The \Poisson" curve

p(� ) := e

��

1

X

j=0

b

j

�

j

=j!

is the limit of reparametrized Bernstein{B�ezier curves, i.e.:

lim

r!1

f

r

(�=r) = p(� ); � 2 [0;1):
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Furthermore,

lim

�!1

p(� ) =

�

b
:

Proof: Stirling's formula gives

lim

r!1

�

(r)

j

(�=r) = lim

r!1

r!

j!(r � j)!

(r � � )

r�j

�

j

r

r

= e

��

�

j

=j!:

This proves lim

r!1

f

r

(�=r) = p(� ), because the b

j

are uniformly bounded

and the series for p converges nicely. This part of the proof resembles the

fact that the binomial probability distribution, occurring as a weight in the

Bernstein{B�ezier polynomial curves, converges to the Poisson distribution.

Now we still have to prove convergence of the Poisson curve p(� ) to the

centroid for � !1. For this we de�ne the shifted Poisson curves

p

j

(� ) := e

��

1

X

m=0

b

j+m

�

m

=m!

for all j 2 ZZ, using periodicity with respect to j. Then, by easy calculation,

p

0

j

(� ) = p

j+1

(� )� p

j

(� )

for all j 2 ZZ, and

p

n

(� ) = p

0

(� ):

With the di�erential operator D := d=d� we �nd (D + 1)p

j

= p

j+1

and

(D + 1)

n

p

j

= (D + 1)

j

(D + 1)

n�j

p

j

= (D + 1)

j

p

n

= (D + 1)

j

p

0

= p

j

for all j. Thus all p

j

satisfy the same linear constant coe�cient di�erential

equation of order n with characteristic polynomial

P

n

(x) = (x+ 1)

n

� 1:

The roots of P

n

are of the form x

k

= �1 + !

k

n

, where !

n

is a n-th root of

unity, i.e.:

!

k

n

:= exp

2�ik

n

; 0 � k � n� 1:
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With certain complex coe�cients �

jk

the functions p

j

have the form

p

j

(� ) =

P

n�1

k=0

�

jk

exp((�1 + !

k

n

)� )

= e

��

P

n�1

k=0

�

jk

exp(

2�ik

n

� );

and all terms except the one for k = 0 must go to zero for � !1, because

�1 + !

k

n

has a negative real part for k 6= 0.

This implies lim

�!1

p

j

(� ) = �

j0

and

lim

�!1

p

0

j

(� ) = 0 = lim

�!1

p

j+1

(� )� lim

�!1

p

j

(� )

= �

j+1;0

� �

j;0

:

Because of 0 =

P

n�1

j=0

p

0

j

(� ) and n �

�

b
=

P

n�1

j=0

p

j

(0) we know that n �

�

b
=

P

n�1

j=0

p

j

(� ) holds for all � . But in the limit � !1 all the values p

j

(1) = �

j;0

are equal, which proves the assertion. QED.

Theorem If z 2 IR

d

is an accumulation point of a sequence f

r

(t

r

) with

t

r

2 [0; 1=2], then either z =

�

b
or z = p(� ) for some � 2 [0;1).

Proof: If we rule out the trivial case z =

�

b
, we can assume t

r

= �

r

=r

with �

r

� � > 0. On [0; � ], the curves g

r

(t) = f

r

(t=r) are continuously

di�erentiable with uniformly bounded derivatives, because the norm of

g

0

r

(t) =

1

r

r

1

X

j=0

�

(r�1)

j

(t)(b

j+1

� b

j

)

is bounded by max

0�j<n

kb

j+1

� b

j

k. The convergence of g

r

to the Poisson

curve p on [0; � ] thus is uniform, and the assertion follows. QED.

Remark: The limit points of f

j+kn

(1 � �=(j + kn)) for k ! 1 and 0 �

j � n� 1 �xed are points of the \backward" and \shifted" Poisson curves p̂

j

de�ned by

p̂

j

(� ) := e

��

1

X

m=0

b

j�m

�

m

=m!;

p

j

(� ) := e

��

1

X

m=0

b

j+m

�

m

=m!;
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where we used the periodicity and added the shifted Poisson curves p

j

. The

union of these two sets of Poisson curves, together with their limit

�

b
, make

up the set of all limit points of the backward and shifted Bernstein{B�ezier

curves

^

b

r;j

(t) :=

1

X

m=0

b

j�m

�

(r)

m

(t); 0 � j < n;

b

r;j

(t) :=

1

X

m=0

b

j+m

�

(r)

m

(t); 0 � j < n;

for r !1.

Figure 3: n = 5 points, all of the curves

Figure 3 shows these curves for a regular pentagon in the plane. To

avoid numerical instabilities for large degrees r, we use the de Casteljau

construction in the form

b

r;j

(t) = (1� t)b

r�1;j

(t) + tb

r�1;j+1

(t)
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with three loops over j, t, and r (innermost to outermost). This requires

storage of n + 1 discretized curve images of equal degree, starting with the

constant curves b

j

of degree zero for j = 0; . . . ; n.

4 Regular polygons in the plane

Now let b

0

; . . . ; b

n�1

be the vertices of the standard regular n{gon in the com-

plex plane, i.e.: b

j

= !

j

n

= exp(2�ij=n) for 0 � j < n. By easy calculation,

the Poisson curves for this con�guration are the logarithmic spirals

p

j

(� ) = !

j

n

e

�(!

n

�1)

;

p̂

j

(� ) = !

j

n

e

�(1=!

n

�1)

:

Figure 4: n = 4 points, Poisson curves plus squares at intersection points

The curves p

j

and p̂

j+1

�rst intersect in z

j

= p

j

(�

n

) = p̂

j+1

(�

n

) with

�

n

=

1

2

2�=n

sin(2�=n)

;
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and z

0

; . . . ; z

n�1

form another regular n{gon. This smaller polygon contains

a complete scaled copy of the contents of the original n{gon, including the

Poisson curves on [�

n

;1), because these satisfy simple functional equations

like

p

j

(� + �) = p

j

(� ) � p

0

(�):

This gives a full account of the self{similarity of the structures in �gures 4

and 5, showing the set of Poisson curves for n = 4 and n = 12, together with

the polygons obtained by connecting the k-th intersection points of Poisson

curves.

Figure 5: n = 12 points, Poisson curves plus polygons at intersection points
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