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Abstract: If n given control points by, ..., b,_; € IR? are repeated periodi-
cally by bjyr, = b; for all k € ZZ, the uniform limit of the Bernstein-Bézier
polynomial curves of degree r with control points bg,...,b, for r — > is a
Poisson curve (after a suitable reparametrization). This fact reveals some
interesting self-similar structures in case of regular n—gons in the plane.

1 Introduction

Let n > 1 control points by, ...,b,_; € IR be given. These control points
are repeated by

bivin :=0b; for 0<j<n—1, andall ke Z

to form an infinite periodic sequence. The centroid of the points is denoted
by b:= %Et& b;, and the Bernstein polynomials of degree r are

J

801 = (5 ><1 — ), 0<j < te0,1].

Then we consider the Bernstein-Bézier polynomials [1],[2],[3]
16 =3 b ()
7=0

for large degrees r and investigate the behavior of f,(¢) in the convex hull of
the control points, when r tends to infinity. We want to characterize all limit
points of the curves f,.(), as shown by figures 1 and 2 for n =4 and n =7
points forming a regular polygon in the plane.
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2 Convergence to the centroid

First we treat the case of a fixed argument ¢ € (0, 1).
Theorem. For allt € (0,1) the centroid b is the limit

lim f.(t) = b.

Proof: For fixed t € (0,1) we perform the de Casteljau construction:

b= b je
0O = (=0 b0, je s, r>1.

Then, for fixed r and ¢, the by)(t) are also periodic with respect to j. Fur-

thermore, any n subsequent points of the by)(t) will have the centroid b.

Figure 1: n = 4 points oriented clockwise
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We now write the de Casteljau steps [5] in matrix notation [4]. If £ is the
d x d unit matrix, then the (nd) x (nd)-matrix

(2 (1-t)FE 0 . 0

0 (2 (1-tF ... 0
T :: . . . . . . .
0 0 0 tE (1-t)E
(1-1FE 0 0 0 tk
has the property
b R bo
T = : =1
Y ", by

Figure 2: n = 7 points oriented clockwise



Now let S be the subspace of IR™ containing all sets of n vectors cq, . .., ¢y y
in IR? with E?:_Ol ¢; = 0. This subspace contains all vectors

() — b bo — b
: =1 :
0 (1) — b by — b

for all r > 0. The whole de Casteljau process, when applied to the differences
to the centroid, stays in the subspace S.

Now let A be an eigenvalue of T" with eigenvector (co,...,c,1)7, and we
again extend periodically by ¢;44, :=¢; for 0 <3 <n—1 and all ke Z.
Then

tci + (1 — t)CH—l = )\CZ'7

A=t A=\
T AT\ @

and

Because of periodicity, ¢, = ¢g holds and implies

=)
— ] =1
1 -t

The eigenvalue A = 1 can occur only with eigenvectors satistying ¢;11 = ¢; =
¢p for all 2. This is not possible for nonzero vectors in the subspace S. The
other eigenvalues are of the form

A=t-14+ (1 —1) w,

with a complex n—th root of unity w, # 1. They must necessarily lie in the
interior of the unit circle, because they are nontrivial convex combinations
of two different roots of unity.

This proves that T' as a mapping on S has only eigenvalues A with [A| < 1.
Therefore

B () — b bo — b
: =1 :
B (1) — b by — b



converges to zero. The first component is f,({) — b, and the assertion of the

theorem follows. QED.
For later use, we prove a stronger result:

Theorem. For points t, = 7,./r with t, — 0 and 7, — o0 for r — 20,

lim f.(t,) = b.

Proof. A direct refinement of the previous proof yields

1F£:(8) = Bl < max lb; — bl - [|T()]]",

0<i<n—
and, since the eigenvalues of T7 (#)T'(t) are
Ap(t) = 2+ (1- t)2 +2t(1 —t)cos(2rk/n), 0 <k <n-—1,

each eigenvalue occurring d times, the Euclidean norm of T'(¢) is bounded by
1 — a,t for small values of ¢, where o, = O(1/n) for n — oo. Inserting ¢, as
defined above we get

1f:(tr) = b < C(1 = anrifr)”

for all » > 1 with a constant (', and this bound tends to zero. QED.

3 Convergence to a Poisson curve

The previous section showed that variable arguments ¢, < 7/r for some fixed
value of 7 € (0, 00) should be considered next.

Theorem. 7The “Poisson” curve
p(r) =€) bt/
=0

is the limit of reparametrized Bernstein—Bézier curves, i.e.:

lim f.(7/r) =p(r), 7 €[0,).

T—00



Furthermore,

Proof: Stirling’s formula gives

! I
lim B;T)(T/r): lim (r=m)™r

_ T i/
7 —00 rﬁoo]’(r—])’ r’ —c T /]

This proves lim,_., f-(7/r) = p(7), because the b; are uniformly bounded
and the series for p converges nicely. This part of the proof resembles the
fact that the binomial probability distribution, occurring as a weight in the
Bernstein—Bézier polynomial curves, converges to the Poisson distribution.

Now we still have to prove convergence of the Poisson curve p(7) to the
centroid for 7 — oo. For this we define the shifted Poisson curves

pi(r) = e Y byt fml
m=0

for all j € Z, using periodicity with respect to j. Then, by easy calculation,

Pi(7) = pipalr) — pi(7)
for all y € ZZ, and
Pa(7) = po(7).
With the differential operator D := d/dr we find (D + 1)p; = p;+1 and

(D+1)"p; = (D+1)(D+1)"p; =(D+1)p,

= (D+1)po = p;

for all y. Thus all p; satisfy the same linear constant coefficient differential
equation of order n with characteristic polynomial

P (z)=(x+1)" =1

The roots of P, are of the form z, = —1 + me where w,, is a n-th root of
unity, i.e.:
E 2mik
W, 1= exp , 0<kE<n—1.
n




With certain complex coefficients «;, the functions p; have the form

pi(T) = Yilyejrexp((—1+wh)r)

= e 7 ZZ;; ak eXp(QTZkT),

and all terms except the one for £ = 0 must go to zero for 7 — o0, because
—1 + w¥ has a negative real part for k # 0.

This implies lim, .. p;(7) = ajo and

lim, o p;(r) = 0=lim;—s pjr1(7) = lim,— p;(7)

Q41,0 — Qj0-

Because of 0 = E;:S pi(r) and n - b = E;:S p;(0) we know that n - b =
E;:S p;(7) holds for all 7. But in the limit 7 — oo all the values p;(o0) = a9
are equal, which proves the assertion. QED.

Theorem If z € IR? is an accumulation point of a sequence f,(t,) with
t, €10,1/2], then either z = b or z = p(7) for some 7 € [0,0).

Proof: If we rule out the trivial case z = 7), we can assume t, = 7,./r
with 7, < 7 > 0. On [0,7], the curves g.(¢f) = f.(t/r) are continuously
differentiable with uniformly bounded derivatives, because the norm of

=< | =

Py BT () (b - b))

g9,(t) =

J=0

is bounded by maxo<j<y, |[|bj41 — bj||. The convergence of ¢, to the Poisson
curve p on [0, 7] thus is uniform, and the assertion follows. QED.

Remark: The limit points of fi1r,(1 —7/(7 + kn)) for & — o0 and 0 <
J < n—1fixed are points of the “backward” and “shifted” Poisson curves p;

defined by
pi(r)i=¢e"" Z bj—mt™/ml,
m=0

pi(r):=e77 Y byt /ml,
m=0
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where we used the periodicity and added the shifted Poisson curves p;. The
union of these two sets of Poisson curves, together with their limit b, make
up the set of all limit points of the backward and shifted Bernstein-Bézier
curves

br(t):=> b BU(1), 0<j <n,
m=0

b (1) := > b BL (1), 0 < <m,
m=0

for r — 0.

Figure 3: n = 5 points, all of the curves

Figure 3 shows these curves for a regular pentagon in the plane. To
avoid numerical instabilities for large degrees r, we use the de Casteljau
construction in the form

bej(t) = (1 = 4)by—1,5(1) + thr—y j1(2)
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with three loops over j, ¢, and r (innermost to outermost). This requires
storage of n + 1 discretized curve images of equal degree, starting with the
constant curves b; of degree zero for y =0,...,n.

4 Regular polygons in the plane

Now let by, ..., b,_1 be the vertices of the standard regular n—gon in the com-
plex plane, i.e.: b; = w! = exp(27wij/n) for 0 < j < n. By easy calculation,
the Poisson curves for this configuration are the logarithmic spirals

pi(r) = wlen,
i(r) = e Won ),

Figure 4: n = 4 points, Poisson curves plus squares at intersection points
The curves p; and p;4q first intersect in z; = p;(7,) = pj+1(7,) with
1 27/n
= §SiH(2ﬂ'/n)7
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and zg,...,z,_1 form another regular n—gon. This smaller polygon contains
a complete scaled copy of the contents of the original n—gon, including the
Poisson curves on [r,,00), because these satisfy simple functional equations
like

pi(r+0) =p;(7) - polo).
This gives a full account of the self-similarity of the structures in figures 4
and 5, showing the set of Poisson curves for n = 4 and n = 12, together with

the polygons obtained by connecting the k-th intersection points of Poisson
curves.

Figure 5: n = 12 points, Poisson curves plus polygons at intersection points
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