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Abstract

In many cases, multivariate interpolation by smooth radial basis functions converges towards polynomial
interpolants, when the basis functions are scaled to become “wide”. In particular, examples show that
interpolation by scaled Gaussians seems to converge towards the de Boor/Ron “least” polynomial interpolant.
The paper starts by providing sufficient criteria for the convergence of radial interpolants, and the structure of
the polynomial limit interpolation is investigated to some extent. The results lead to general questions about
“radial polynomials” ‖x− y‖2`2 and the properties of spaces spanned by linear combinations of their shifts.
For their investigation a number of helpful results are collected. In particular, the new notion of a discrete
moment basis turns out to be rather useful. With these tools, a variety of well–posed multivariate polynomial
interpolation processes can be formulated, leading to interesting questions about their relationships. Part
of them can be proven to be “least” in the sense of de Boor and Ron. Finally, the paper generalizes the
de Boor/Ron interpolation process and shows that it occurs as the limit of interpolation by Gaussian radial
basis functions. As a byproduct, we get a stable method for preconditioning the matrices arising with
interpolation by smooth radial basis functions.
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1 Introduction

Let φ : [0,∞)→ IR be a smooth radial basis function that can be written as

φ(r) = f(r2) with a smooth function f : IR→ IR,

and in particular we have in mind the Gaussians and inverse multiquadrics, i.e.

φ(r) = exp(−r2) and φ(r) = (1 + r2)β/2, β < 0.

We scale φ in such a way that the functions get wider, i.e. we define

φc(r) := φ(r
√
c) = f(cr2), c, r ≥ 0 (1)

and since we want to consider small c, we assume that f is analytic around zero.

We fix a set X = {x1, . . . , xM} ⊂ IRd of scattered centers for interpolation, and consider the behaviour of
the Lagrange interpolation basis for c→ 0. It is obtainable as the solution (uc1(x), . . . , ucM (x)) ∈ IRM of the
system

M∑
j=1

φc(‖xj − xk‖2)ucj(x) = φc(‖x− xk‖2) for all 1 ≤ k ≤M. (2)

By a surprising observation of Driscoll/Fornberg [6] and Danzeglocke [5] there are many cases where the
limits of the Lagrange basis functions ucj(x) for c → 0 exist and are multivariate polynomials in x. Our
first goal is to prove this fact under certain assumptions on φ and X. From a recent paper by Fornberg,
Wright and Larsson [7] it is known that convergence may depend critically on the geometry of X and certain
properties of φ. We study these connections to some extent, and we want to characterize the final polynomial
interpolant in a way that is independent of the limit process. This poses some interesting questions about
multivariate polynomials and geometric properties of scattered data sets. The investigations about the limit
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polynomial interpolants are based on “radial” polynomials of the form ‖x− y‖2`2 because the matrix entries
in (2) have series expansions

φc(‖xj − xk‖2) = f(c‖xj − xk‖22) =

∞∑
`=0

f (`)(0)

`!
c`‖xj − xk‖2`2

and the right–hand side contains

φc(‖x− xk‖2) = f(c‖x− xk‖22) =

∞∑
`=0

f (`)(0)

`!
c`‖x− xk‖2`2 .

Thus this paper contains a somewhat nonstandard approach to multivariate interpolation, namely via linear
combinations of “radial polynomials”. In particular, we define two different classes of multivariate polynomial
interpolation schemes that can be formulated without recurring to limits of radial basis functions. Examples
show that the various methods are actually different. For their analysis, some useful theoretical notions
are introduced, i.e. “discrete moment conditions” and “discrete moment bases”. To establish the link from
interpolation by scaled Gaussians to the de Boor/Ron “least” polynomial interpolation [2, 3, 4], we generalize
the latter and, in particular, introduce a scaling and relate the theory to reproducing kernel Hilbert spaces.
Using the new notion of a “discrete moment basis” we can prove that the algorithm of de Boor and Ron is
the limit of radial basis function interpolation using the Gaussian kernel, if the kernel gets “wide”. Finally,
we prove that properly scaled discrete moment bases can be used for preconditioning the systems arising in
radial basis function interpolation.

2 Limits of Radial Basis Functions

Because we shall be working with determinants, we fix the numbering of the points in X now. For a second
ordered set Y = {y1, . . . , yM} ⊂ IRd with the same number M of data points we define the matrix

Ac,X,Y := (φc(‖xj − yk‖2))1≤j,k≤M =
(
f(c‖xj − yk‖22)

)
1≤j,k≤M

.

Note that Ac,X,X is symmetric and has a determinant that is independent of the order of the points in X. If
φ is positive definite, the matrices Ac,X,X are positive definite and have a positive determinant for all c > 0.

Since f is analytic around the origin, the matrices Ac,X,Y have a determinant with a convergent series
expansion

det Ac,X,Y =

∞∑
k=0

ckpk(X,Y ) (3)

for small c, where the functions pk(X,Y ) are polynomials in the points of X and Y . In particular they are
sums of powers of terms of the form ‖xj − yk‖22. They can be determined by symbolic computation, and we
shall give an explicit formula in section 3 and prove the upper bound 2k for their total degree in Lemma 5.

We define Xj := X \ {xj}, where xj is deleted and the order of the remaining points is kept. Furthermore,
in the sets Xj(x) := (X \ {xj}) ∪ {x}, 1 ≤ j ≤M the point xj is replaced by x, keeping the order.

The general structure of Lagrange basis functions is described by a standard technique:

Lemma 1 [7] The Lagrange basis functions ucj(x), 1 ≤ j ≤ M for interpolation in X = {x1, . . . , xM} by a
scaled positive definite radial function φc have the form

ucj(x) :=
det Ac,X,Xj(x)

det Ac,X,X
=

∑∞
k=0

ckpk(X,Xj(x))∑∞
k=0

ckpk(X,X)
, 1 ≤ j ≤M. (4)

Proof: The quotient of determinants is in the span of the functions φc(‖x − xj‖2), 1 ≤ j ≤ M , and it
satisfies uj(xk) = δjk, 1 ≤ j, k ≤M . Since interpolation is unique, we are done. 2

From (4) it is clear that the convergence behaviour of the Lagrange basis function ucj(x) for c→ 0 crucially
depends on the smallest values of k such that the real numbers pk(X,X) or pk(X,Xj(x)) are nonzero.
Examples show that this number in turn depends on the geometry of X, getting large when the set
“degenerates” from “general position”.
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Definition 1 Let κ(d,M) be the minimal k ≥ 0 such that the multivariate polynomial X 7→ pk(X,X) is
nonzero on the space RMd. A set X = {x1, . . . , xM} ⊂ IRd is in general position with respect to φ if
pκ(d,M)(X,X) 6= 0. A set X = {x1, . . . , xM} ⊂ IRd has a degeneration order j with respect to φ if

pk(X,X) = 0 for all 0 ≤ k < κ(d,M) + j.

The maximal degeneration order of a set X = {x1, . . . , xM} ⊂ IRd will be denoted by δ(X). We then have

pk(X,X) = 0 for all 0 ≤ k < κ(d,M) + δ(X)
pk(X,X) 6= 0 k = κ(d,M) + δ(X).

The degeneration order δ(X) is dependent on φ and the geometry of X. For convenience, we also use the
notation

k0(X) := κ(d,M) + δ(X) (5)

to describe the smallest k ≥ 0 such that pk(X,X) 6= 0. If φ is positive definite, we can conclude that
pk0(X)(X,X) > 0 holds for all X. With this notion, the formula (4) immediately yields

Theorem 1 [7] If x ∈ IRd and j ∈ {1, . . . ,M} are such that

pk(X,Xj(x)) = 0 for all k < k0(X), (6)

then the limit of ucj(x) for c→ 0 is the value of the polynomial

pk0(X)(X,Xj(x))

pk0(X)(X,X)
. (7)

If (6) fails, then the limit is infinite. 2

In the paper [7] of Fornberg et. al. there are cases where (6) fails for certain geometries, e.g. when φ is a
multiquadric (inverse or not), when the set X consists of 5 points on a line in IR2 and when the evaluation
point x does not lie on that line. Strangely enough, the observations in [7] lead to the conjecture that the
Gaussian is the only radial basis function where (6) never fails when data are on a line and evaluation takes
place off that line. However, at the end of the paper we shall finish the proof of part of a related statement:

Theorem 2 Interpolation with scaled Gaussians always converges to the de Boor/Ron polynomial inter-
polant when the Gaussian widths increase.

The proof needs a rather special technique, and thus we postpone it to the penultimate section, proceeding
now with our investigation of convergence in general. Unfortunately, condition (6) contains an unsymmetric
term, and we want to replace it by

k0(Xj(x)) ≥ k0(X), i.e. δ(Xj(x)) ≥ δ(X), i.e. .pk(Xj(x), Xj(x)) = 0 for all k < k0(X). (8)

Then we can extend results by Fornberg et al. in [6, 7].

Theorem 3 If the degeneration order δ(X) of X is not larger than the degeneration order δ(Xj(x)) of Xj(x),
then the polynomial limit of the Lagrange basis function ucj(x) for c → 0 exists. In particular, convergence
takes place when X is in general position with respect to φ.

Proof: We assert boundedness of ucj(x) for c → 0 and then use Theorem 1. Let us denote the standard
power function for interpolation on data X and evaluation at x by PX(x) and let us write ‖.‖φc for the norm
in the native space of φc (see e.g. [9] for a short introduction). Then

Lemma 2 The standard error bound of radial basis function interpolation yields the bound

|ucj(x)| ≤ PXj (x)‖ucj‖φc (9)

for all x ∈ IRd, all c > 0 and all j, 1 ≤ j ≤M .

Proof: Zero is the interpolant to ucj on Xj = X \ {xj}. 2

Lemma 3

‖ucj‖2φc =
det Ac,Xj ,Xj
det Ac,X,X

(10)

for 1 ≤ j ≤M, c > 0.
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Proof: If αj is the coefficient of φ(‖x− xj‖2) in the representation of ucj , we have

‖ucj‖2φc = αj ,

because of the general fact that an interpolant s to data f(xk), 1 ≤ k ≤M has the native space norm

‖s‖2φc =

∥∥∥∥∥
M∑
j=1

αjφc(‖x− xj‖2)

∥∥∥∥∥
2

φc

=

M∑
j=1

αjf(xj).

Then (10) follows from Cramer’s rule applied to the interpolation problem with Kronecker data δjk, 1 ≤
k ≤M solved by ucj . 2

Lemma 4 The power function has the representation

P 2
X(x) =

det Ac,X∪{x},X∪{x}

det Ac,X,X
.

Proof: By expansion of the numerator, using (4) and the representation

P 2
X(x) = φc(0)−

M∑
j=1

ucj(x)φc(‖x− xj‖2).

This form is somewhat nonstandard. It follows from the optimality property of the power function, and it
can be retrieved from [10], p. 92, (4.3.14). 2

To finish the proof of Theorem 3, the above results yield

P 2
Xj (xj) =

det Ac,X,X
det Ac,Xj ,Xj

, ‖ucj‖2φc =
1

P 2
Xj

(xj)

and

|ucj(x)| ≤ PXj (x)‖ucj‖φc ≤
PXj (x)

PXj (xj)
.

With the representation of the power function via determinants we get

(ucj(x))2 ≤
P 2
Xj

(x)

P 2
Xj

(xj)
=

det Ac,Xj(x),Xj(x)

det Ac,X,X
(11)

The numerator and denominator of the right–hand side contain sets of M points each. If we assume (8), we
arrive at

(ucj(x))2 ≤

∑∞
k=k0(Xj(x))

ckpk(Xj(x), Xj(x))∑∞
k=k0(X)

ckpk(X,X)
<∞

which concludes the proof of Theorem 3. 2

Remark. The first part of (11) is an interesting bound on Lagrange basis functions in radial basis function
interpolation. If the set X is formed recursively by adding to X the point xM+1 where PX(x) is maximal (this
adds the data location where the worst–case error occurs), one gets a sequence of Lagrange basis functions
that is strictly bounded by 1 in absolute value. The implications on Lebesgue constants and stability of the
interpolation process should be clear, but cannot be pursued here.

3 Basic Polynomial Determinants

To derive a formula for the polynomials pk in (3) we need the expansion

f(z) =

∞∑
k=0

fkz
k (12)

of f around the origin. If φ is positive definite, we know by the standard Bernstein-Widder representation
(see [11] for a short summary) that all (−1)kfk are positive. Furthermore, we use the standard notation for
determinants

det (bij)1≤i,j≤M =
∑
π∈SM

(−1)π
M∏
j=1

bjπ(j)
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where π varies over all permutations in the symmetric group SM and (−1)π is the number of inversions in
π. Then

det Ac,X,Y =
∑
π∈SM

(−1)π
M∏
j=1

f(c‖xj − yπ(j)‖22)

=
∑
π∈SM

(−1)π
M∏
j=1

∞∑
m=0

fmc
m‖xj − yπ(j)‖2m2

=
∑
π∈SM

(−1)π
∞∑
ρ1=0

∞∑
ρ2=0

· · ·
∞∑

ρM=0

M∏
j=1

(
fρj c

ρj‖xj − yπ(j)‖
2ρj
2

)
=

∑
π∈SM

(−1)π
∑
ρ∈INM0

fρc
|ρ|

M∏
j=1

‖xj − yπ(j)‖
2ρj
2

=
∑
ρ∈INM0

fρc
|ρ|
∑
π∈SM

(−1)π
M∏
j=1

‖xj − yπ(j)‖
2ρj
2

=

∞∑
k=0

ck
∑

ρ ∈ INM
0

|ρ| = k

fρdρ(X,Y )

with multi–index notation
fρ :=

∏M

j=1
fρj

dρ(X,Y ) := det
(
‖xi − yj‖2ρi2

)
1≤i,j≤M

pk(X,Y ) :=
∑

ρ ∈ INM
0

|ρ| = k

fρdρ(X,Y ).

To see a bound on the degree, consider |ρ| = k and conclude that

dρ(X,Y ) := det
(
‖xi − yj‖2ρi2

)
1≤i,j≤M

=
∑
π∈SM

(−1)π
M∏
j=1

‖xj − yπ(j)‖
2ρj
2

has total degree at most 2|ρ| = 2k. Altogether we have

Lemma 5 The polynomials pk(X,Y ) have maximal degree 2k as polynomials in X and Y . 2

In Lemma 11 we shall provide a better result, but it requires more tools. We can also deduce that k0(X)
for |X| = M increases with M . In particular, we get

M ≤
(

2k0(X) + d

d

)
from

Lemma 6 If pk(X,Y ) is nonzero for some special sets X,Y with M = |X| = |Y |, then M ≤
(

2k+d
d

)
.

Conversely, if M >
(

2k+d
d

)
, then pk(X,Y ) = 0 for all sets X,Y with M = |X| = |Y |.

Proof: If some dρ(X,Y ) is nonzero for M = |X| = |Y |, there are M linearly independent d–variate
polynomials of degree at most 2|ρ| = 2k. This proves the first assertion, because these polynomials span a
space of dimension

(
2k+d
d

)
. The second assertion is the contraposition of the first. 2

Example 1 Let us look at some special cases that we prepared with MAPLE. We reproduce the results in
[7], but we have a somewhat different background and notation. The 1D case with M = 2 has in general
p0(X,X) = 0, p1(X,X) = −2f(0)f ′(0)(x2 − x1)2. Thus κ(1, 2) = 1 and there is no degeneration except
coalescence. The bound in Lemma 5 turns out to be sharp here. The case M = 3 leads to κ(1, 3) = 3 with

p3(X,X) = −2f ′(0)(3f(0)f ′′(0)− f ′(0)2)(x1 − x2)2(x1 − x3)2(x2 − x3)2.

Geometrically, there is no degeneration except coalescence. The factor 3f(0)f ′′(0)−f ′(0)2 could possibly lead
to some discussion, but for positive definite φ it must be positive because we know that f(0),−f ′(0), f ′′(0)
and p3(X,X) are positive. We find further κ(1, 4) = 6 with

p6(X,X) = −4

3
(3f ′′(0)2 − 5f ′(0)f ′′′(0))(3f(0)f ′′(0)− f ′(0)2)

(x1 − x2)2(x1 − x3)2(x1 − x4)2(x2 − x3)2(x2 − x4)2(x3 − x4)2.
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The general situation seems to be κ(1,M) = M(M−1)/2 with pκ(1,M) being (up to a factor) the polynomial
that consists of a product of all (xj − xk)2 for 1 ≤ j < k ≤ M , which is of degree 2κ(1,M) = M(M − 1).
Thus the maximal degree in Lemma 5 is actually attained again. Note that the 1D situation also carries
over to the case when X and Xj(x) lie on the same line in Rd.

Now let us look at 2D situations. The simplest nontrivial 2D case is for M = 2 when the evaluation is not
on the line connecting the points of X. But from the 1D case we can infer

κ(2, 2) = 1 = k0(X) = k0(Xj(x))

and do not run into problems, because we have Theorem 3. In particular, we find

p1(X,X) = −2f(0)f ′(0)((x1 − x2)2 + (y1 − y2)2).

Now we look at M = 3 in 2D. The general expansion yields κ(2, 3) = 2 with

p2(X,X) = 4f(0)f ′(0)2(det BX)2

and BX being the standard 3 × 3 matrix for calculation of barycentric coordinates based on X. Its
determinant vanishes iff the points in X are collinear. Thus nondegeneracy of 3–point sets with respect
to positive definite radial basis functions is equivalent to the standard notion of general position of 3 points
in IR2. To look for higher–order degeneration, we consider 3 collinear points now, and since everything is
invariant under shifts and orthogonal transformations, we can assume that the data lie on the x–axis. This
boils down to the 1D case, and we get p3(X,X) > 0 with no further possibility of degeneration. But now
we have to look into the first critical case, i.e. when X is collinear but Xj(x) is not. This means that we
evaluate the interpolant off the line defined by X. Theorem 3 does not help here. If we explicitly go back to
(6), we still get convergence if we prove that p2(X,Xj(x)) = 0 for all collinear point sets X and all x ∈ IR2.
Fortunately, MAPLE calculates

p2(X,Xj(x)) = 4f(0)f ′(0)2(det BX)(det BXj(x))

and thus there are no convergence problems. However, the ratio of the terms p3(X,Xj(x)) and p3(X,X)
now depends on φ.

Now we go for M = 4 in 2D and first find κ(2, 4) = 4 from MAPLE, but it cannot factor the polynomial
p4(X,X) properly or write it as a sum of squares. Taking special cases of 3 points not on a line, the
polynomial p4(X,X) seems to be always positive except for coalescence. In particular, it does not vanish
for 4 non–collinear points on a circle or a conic, as one would suspect. Taking cases of 3 points on a line,
the polynomial p4(X,X) vanishes iff the fourth point also lies on that line. Thus there is some experience
supporting the conjecture that nondegeneracy of 4 points in 2D with respect to positive definite functions
just means that the points are not on a line. But if they are on a line, we find k0(X) = 6 due to the 1D
case, and thus p5(X,X) also vanishes. This is confirmed by MAPLE, and we now check the case where the
points of X are on a line but those of Xj(x) not. It turns out that then (6) holds for k0(X) = 6, and the
case does not show divergence.

The M = 5 situation in IR2 has κ(2, 5) = 6. The geometric interpretation of points in general position wrt.
φ is unknown, because the zero set of p6(X,X) is hard to determine in general. If 4 points are fixed at the
corners of the square [0, 1]2, and if the polynomial 2

3
p6(X,X) is evaluated for inverse multiquadrics with

β = −1 as a function of the remaining point x5 = (ξ, η) ∈ IR2, we get the nonnegative polynomial

3ξ2(1− ξ)2 + 3η2(1− η)2 + (ξ(1− ξ) + η(1− η))2

which vanishes only at the corners of the square. Thus it can be ruled out that degeneracy systematically
occurs when 4 or 5 points are on a circle or three points are on a line. However, it turns out that p6(X,X)
always vanishes if 4 points are on a line. The next coefficient p7(X,X), if calculated for 4 points on a
line, vanishes either if the fifth point also lies on the line, or for β = 0, 2, 3, 7, or for coalescence. The final
degeneration case thus occurs when all 5 points are on a line, and from 1D we then expect k0(X) = 10.

Let us examine the divergence case described by Fornberg et. al. in [7]. It occurs when X consists of
5 points on a line, while evaluation takes place off that line. The 1D case teaches us that we should get
k0(X) = 10 for 5 collinear points, and MAPLE verifies this, at least for the fixed 5 collinear equidistant
points on [0, 1]× {0}. However, we also find that

p9(X,X1(x)) =
−9

8388608
η2
(
5f ′(0)f ′′′(0)− 3f ′′(0)2

) (
f(0)f ′′(0)f ′′′(0) + f ′(0)f ′′(0)2 − 2f ′(0)2f ′′′(0)

)
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for points x = (ξ, η) ∈ IR2. If we put in multiquadrics, i.e. f(t) = (1 + t)β/2, we get the same result as in
[7], which reads

p9(X,X1(x)) =
−9

268435456
η2β4(β − 7)(β − 2)2

in our notation, proving that divergence occurs for multiquadrics except for the strange case β = 7. Another
curiosity is that for multiquadrics the value p10(X,X) vanishes for the conditionally positive definite cases
β = 7 and β = 11.790. As expected, this polynomial is positive for the positive definite cases, e.g. for
negative β.

Checking the case where exactly 4 points of X are on a line, we find that (6) holds for k0(X) = 7, and thus
there is no convergence problem.

4 A Related Class of Polynomial Interpolation Methods

We can avoid all convergence problems if we boldly take (7) to define

uj(x) :=
pk0(X)(X,Xj(x))

pk0(X)(X,X)
(13)

for all 1 ≤ j ≤M and all x ∈ IRd. The denominator will always be positive if we start with a positive definite
function, and the discussion at the beginning of section 3 shows that the polynomials pk(X,Y ) will always
vanish if either X or Y have two or more coalescing points. Thus we get Lagrange interpolation polynomials
for any kind of geometry. The result will be dependent on the function f and its Taylor expansion, and
thus there is a full scale of polynomial interpolation methods which is available without any limit process.
However, it is clear from (7) that polynomial limits of radial basis function interpolants, if they exist, will
usually have the above form. It will be interesting to study how the technique of de Boor and Ron [2, 3, 4]
relates to this. However, it uses a different truncation strategy.

Example 2 Let us check how the above technique overcomes the five–point degeneration case in Example
1. If we take the 5 equidistant points on [0, 1]×{0} and classical multiquadrics, the Lagrange basis function
u0 corresponding to the origin becomes

u0(ξ, η) =
1

3
(ξ − 1)(4ξ − 3)(2ξ − 1)(4ξ − 1) +

8

21
ξη2(18ξ − 25),

and the second term is missing if we take the Gaussian. For f(t) = log(1 + t) the additional term is

−2

3339
η2(5195 + 15240ξ − 11424ξ2 + 1008η2).

There is dependence on f , but no degeneration. We simply ignore p9 and focus on the quotient of values of
p10.

5 Point Sets, Polynomials, and Moments

Our results so far require knowledge and numerical availability of k0(X) and pk0(X)(X,Xj(x)). Section 3
gives a first idea for the evaluation of these quantities, but it still uses the limit process. It suggests that
one looks at polynomials of the form ‖x − y‖2`2 , and we shall use this section to make a fresh start into
multivariate polynomials and point sets. The relation to the earlier sections will turn up later.

Let IP dm be the space of all d–variate real–valued polynomials of order (=degree+1) up to m, and let
X = {x1, . . . , xM} be a fixed set of M points in IRd. With the dimension Q =

(
m+d−1

d

)
and a basis

p1, . . . , pQ of IP dm we can form the Q×M matrices Pm and the M ×M matrices A` with

Pm := (pi(xj))1≤i≤Q, 1≤j≤M , A` = ((−1)`‖xj − xk‖2`2 )1≤j,k≤M , ` ≥ 0 (14)

to provide a very useful notion that is closely related to multivariate divided differences (see C. de Boor [1]):

Definition 2 A vector α ∈ IRM satisfies discrete moment conditions of order m with respect to X if
Pmα = 0 or

M∑
j=1

αjp(xj) = 0 for all p ∈ IP dm

holds. These vectors form a linear subspace MCm(X) := ker Pm of IRM for M = |X|.
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Note that the definition involves all polynomials of order up to m, while the following involves radial
polynomials of the form ‖x− xj‖2` for 0 ≤ ` < m.

Theorem 4 A vector α ∈ IRM satisfies discrete moment conditions of order m with respect to X iff

αTA`α = 0 (15)

holds for all 0 ≤ ` < m.

Note that the condition A`α = 0 would be more restrictive. It will come up later. The proof of Theorem 4
uses Micchelli’s lemma from [8], which we restate here because we make frequent use of its proof technique
later.

Lemma 7 If α ∈ IRM satisfies discrete moment conditions of order m, then the numbers αTA`α vanish for
all ` < m and αTAmα is nonnegative. The latter quantity vanishes iff α satisfies discrete moment conditions
of order m+ 1.

Proof: Let us take a vector α ∈ IRM satisfying discrete moment conditions of order m, and pick any ` ≤ m
to form

(−1)`αTA`α =

M∑
j=1

M∑
k=1

αjαk(‖xj − xk‖22)`

=

M∑
j=1

M∑
k=1

αjαk
∑

`1+`2+`3=`

‖xj‖2`12 (−2(xj , xk))`2‖xk‖2`32

=

M∑
j=1

M∑
k=1

αjαk
∑

`1 + `2 + `3 = `
`2 + 2`3 ≥ m
`2 + 2`1 ≥ m

‖xj‖2`12 (−2(xj , xk))`2‖xk‖2`32 .

This value vanishes for ` < m, and this also proves one direction of the second statement, if we formulate it
for m− 1. For ` = m the two inequalities can only hold if `1 = `3. Thus (−1)` = (−1)`2 , and we can write
in multi–index notation

αTA`α =

M∑
j=1

M∑
k=1

αjαk(−1)`‖xj − xk‖2`2

=

`∑
`2 = 0

`− `2 ∈ 2ZZ

2`2
M∑
j=1

M∑
k=1

αjαk‖xj‖`−`2‖xk‖`−`2(xj , xk)`22

=

`∑
`2 = 0

`− `2 ∈ 2ZZ

2`2
M∑
j=1

M∑
k=1

αjαk‖xj‖`−`2‖xk‖`−`2
∑

i ∈ INd
0

|i| = `2

xijx
i
k

=

`∑
`2 = 0

`− `2 ∈ 2ZZ

2`2
∑

i ∈ INd
0

|i| = `2

M∑
j=1

M∑
k=1

αjαk‖xj‖`−`2‖xk‖`−`2xijxik

=
∑̀
`2 = 0

`− `2 ∈ 2ZZ

2`2
∑

i ∈ INd
0

|i| = `2

(
M∑
j=1

αj‖xj‖`−`2xij

)2

≥ 0.

If this vanishes, all expressions
M∑
j=1

αj‖xj‖`−`2xij

with 0 ≤ `2 ≤ `, ` − `2 ∈ 2ZZ, i ∈ INd
0 , |i| = `2 must vanish, and this implies that α satisfies discrete

moment conditions of order `+ 1 = m+ 1. 2

It is now easy to prove Theorem 4. If α satisfies discrete moment conditions up to order m, Micchelli’s
lemma proves that (15) holds. For the converse, assume that (15) is true for some α ∈ IRM and proceed by
induction. There is nothing to prove for order zero, and if we assume that we have the assertion up to order
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m − 1 ≥ 0, then we use it to conclude that α satisfies discrete moment conditions of order m − 1 because
it satisfies (15) up to ` = m − 1. Then we apply Micchelli’s lemma again on the level m − 1, and since we
have αTAm−1α = 0, we conclude that α satisfies discrete moment conditions of order m. 2

There is another equivalent form of discrete moment conditions, taking the form of degree reduction of linear
combinations of high–degree radial polynomials:

Lemma 8 A vector α ∈ IRM satisfies discrete moment conditions of order m, iff for all 2` ≥ m the
polynomials

M∑
k=1

αk‖x− xk‖2`2

have degree at most 2`−m.

Proof: Let us first assume that α ∈ IRM satisfies discrete moment conditions of order m. We look at

M∑
k=1

αk‖x− xk‖2`2

=

M∑
k=1

αk
∑

`1+`2+`3=`

‖x‖2`12 (−2(x, xk))`2‖xk‖2`32

=

M∑
k=1

αk
∑

`1 + `2 + `3 = `
`2 + 2`3 ≥ m

‖x‖2`12 (−2(x, xk))`2‖xk‖2`32

and this is of degree at most 2`1 + `2 = 2`− 2`3 − `2 ≤ 2`−m.

We now prove the converse and apply the same idea as in the proof of Micchelli’s lemma to get

M∑
k=1

αk‖x− xk‖2`2

=

M∑
k=1

∑
`1+`2+`3=`

αk‖x‖2`12 (−2(x, xk))`2‖xk‖2`32

=
∑̀
`2 = 0

`− `2 = 2`1 + 2`3 ∈ 2ZZ

(−2)`2
∑

i ∈ INd
0

|i| = `2

‖x‖2`12 xi
M∑
k=1

αk‖xk‖2`32 xik

for arbitrary vectors α ∈ IRM . If this is a polynomial of degree at most 2`−m, then all sums

M∑
k=1

αk‖xk‖2`32 xik

with 2`1 + `2 > 2` −m or, equivalently, `2 + 2`3 < m must vanish. Thus α satisfies moment conditions of
order m. 2

Note that in the above argument it suffices to pick just one ` with 2` ≥ m. Thus

Lemma 9 A vector α ∈ IRM satisfies discrete moment conditions of order m, iff for some ` with 2` ≥ m
the polynomial

M∑
k=1

αk‖x− xk‖2`2

has degree at most 2`−m. 2

Now we use that the discrete moment spaces for a finite point set X = {x1, . . . , xM} ⊂ IRd form a decreasing
sequence

· · · ⊆MCm+1(X) ⊆MCm(X) ⊆ · · · ⊆MC0(X) = RM . (16)

This sequence must stop with some zero space at least at order M , because we can separate M points always
by polynomials of degree M − 1, using properly placed hyperplanes.
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Definition 3 For any finite point set X = {x1, . . . , xM} ⊂ IRd there is a unique largest natural number
µ = µ(X) such that MCµ(X) 6= {0} = MCµ+1(X). We call µ(X) the maximal discrete moment order of
X.

With this notion, the sequence (16) can be written as

MCµ+1(X) = {0} 6= MCµ(X) ⊆MCµ−1(X) · · · ⊆MC0(X) = RM . (17)

There is a fundamental observation linked to the maximal discrete moment order.

Theorem 5 If there is a polynomial interpolation process based on a set X, it cannot work exclusively with
polynomials of degree less than µ(X).

Proof: If we take a nonzero vector α from MCµ, we see that it is in the kernel of all matrices Pm from (14)
for all m ≤ µ. Thus these matrices can have full column rank M only if m > µ. 2.

The following notion is borrowed from papers of de Boor and Ron [2, 3, 4].

Definition 4 We call a polynomial interpolation process for a point set X least, if it works with polynomials
of degree at most µ(X).

Remark: Below we shall see couple of least polynomial interpolation processes on X, including the one by
de Boor and Ron.

We now go back to where we started from, and relate µ(X) with the quantity k0(X) defined in (5).

Lemma 10 For all sets X and Y of M points in IRd we have

pk(X,Y ) = 0 unless 2k ≥ µ(Y )

and in particular 2k0(X) ≥ µ(X).

Proof: Take a vector ρ ∈ ZZM0 and the matrix(
‖xi − yj‖2ρi2

)
1≤i,j≤M

.

We multiply by a nonzero vector α ∈MCµ for µ := µ(Y ) and get

M∑
j=1

αj‖xi − yj‖2ρi2

=

M∑
j=1

αj
∑

`1+`2+`3=ρi

‖xi‖2`1(−2(xTi yj))
`2‖yj‖2`32

=

ρi∑
`1=0

‖xi‖2`1
∑

`2 + `3 = ρi − `1
`2 + 2`3 ≥ µ

M∑
j=1

αj(−2(xTi yj))
`2‖yj‖2`32

for all i, 1 ≤ i ≤ M . Since `2 + 2`3 ≥ µ means 2ρi − µ ≥ 2`1 + `2, this vanishes for those i where 2ρi < µ.
Thus the matrix can be nonsingular only if 2ρi ≥ µ for some i, and this implies 2‖ρ‖∞ ≥ µ. Since the
polynomials pk(X,Y ) are superpositions of determinants of such matrices with 2‖ρ‖1 = 2k, the assertion is
proven. 2

Lemma 11 The Lagrange basis polynomials of (7) are of degree at most 2k0(X)− µ(X).

Proof: We look at the above argument, but swap the meaning of X and Y there, replacing X by Xj(x) and
Y by X. The determinants vanish unless 2‖ρ‖∞ ≥ µ(X), and the remaining terms are of degree at most

2`1 + `2 ≤ 2ρi − µ(X) ≤ 2‖ρ‖∞ − µ(X) ≤ 2‖ρ‖1 − µ(X) ≤ 2k − µ(X).

2

We note that there is a lot of leeway between the result of Lemma (11) and the actually observed degrees
of the pk0(X)(X,Xj(x)). The latter seem to be bounded above by µ(X) instead of 2k0(X)− µ(X).

Theorem 6

k0(X) =

µ(X)∑
j=1

j(dimMCj − dimMCj+1) ≥ µ(X). (18)
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Proof: Let us take a nonzero vector α ∈MCµ and evaluate the quadratic form

αTAc,X,Xα

=

∞∑
s=0

csfsα
TAsα

=

∞∑
s=µ

csfsα
TAsα

= cµfµα
TAµα+

∞∑
s=µ+1

csfsα
TAsα.

By Courant’s minimum–maximum principle, this implies that Ac,X,X has at least dimMCµ eigenvalues that
decay at least as fast as cµ to zero for c→ 0.

But there are no eigenvalues that decay faster than that. To see this, take for each c > 0 a normalized
nonzero eigenvector αc such that the unique smallest eigenvalue

αTc Ac,X,Xαc =

∞∑
s=0

csfsα
T
c Asαc =: λc

decays like cµ or faster. The coefficients αTc Asαc can increase with s only like ( diam(X))2s, and thus we have
a stable limit of the analytic function λc of c with respect to c→ 0. If we pick sequences of c’s that converge
to zero such that αc converges to some nonzero normalized vector α, we see that necessary α ∈ MCµ. But
then λc cannot decay faster than cµ for c→ 0. Going back to Courant’s minimum–maximum principle, we
now know that Ac,X,X has precisely dimMCµ eigenvalues that decay exactly like cµ to zero for c→ 0.

We can now repeat this argument on the subspace of MCµ−1 which is orthogonal to MCµ. For each
nonzero vector of this space, the quadratic form decays like cµ−1, and there are dimMCµ−1 − dimMCµ
linear independent vectors with this property. Now we look for arbitrary vectors αc that are orthogonal to
the already determined dimMCµ eigenvectors of Ac,X,X with eigenvalues of decay cµ, and we assume that
they provide eigenvalues with fastest possible decay. This decay cannot be of type cµ or faster due to the
assumed orthogonality, which allows passing to the limit. It must thus be of exact decay cµ−1. Induction
now establishes the fact that for each j, 0 ≤ j ≤ µ there are dimMCj − dimMCj+1 eigenvalues of Ac,X,X
with exact decay like cj for → 0. Thus the determinant decays exactly like the product of these, and this
proves our assertion. 2

Note that the above discussion fails to prove that the limiting polynomial interpolation process coming
from a smooth radial basis function is least in all cases. We have to leave this problem open. Though
k0(X) will exceed µ(X), for instance in 1D situations, there is plenty of cancellation in the polynomials
pk0(X)(X,Xj(x)) that we have not accounted for, so far. On the other hand, we have not found any example
where the polynomial limit of a radial basis function interpolation is not of least degree.

There is another interesting relation of µ to the spaces spanned by radial polynomials:

Lemma 12 Define the M–vectors

F`(x) :=
(
(−1)`‖x− xk‖2`2

)
1≤k≤M

.

Then the M ×M(s + 1) matrix with columns F`(xj), 1 ≤ j ≤ M, 0 ≤ ` ≤ s has full rank M if s ≥ µ, and
µ is the smallest possible number with this property.

Proof: Assume that the matrix does not have full rank M for a fixed s. Then there is a nonzero vector
α ∈ IRM such that

A`α = 0 for all 0 ≤ ` ≤ s
and this implies discrete moment conditions of order s+ 1. Thus s+ 1 ≤ µ. 2

This teaches us that when aiming at interpolation by radial polynomials of the form ‖x− xk‖2`2 one has to
go up to ` = µ to get anywhere. But in view of Theorem 5 this reservoir of radial polynomials is way too
large if we focus on the degree. We have to find a useful basis of an M–dimensional subspace of polynomials
of degree at most µ, if we want a least interpolation method. The following notion will be very helpful for
the rest of the paper.
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Definition 5 A discrete moment basis of RM with respect to X is a basis

α1, . . . , αM such that αj ∈MCtj \MCtj+1

for the decomposition sequence (17) and t1 = 0 ≤ . . . ≤ tM = µ.

Remark. A discrete moment basis α1, . . . , αM of IRM can be chosen to be orthonormal, when starting
with αM , spanning the spaces MCµ ⊆ MCµ−1 ⊆ . . . ⊆ M0 = RM one after the other. But there are other
normalizations that make sense, in particular the one that uses conjugation via A` on MC`\MC`+1, because
this matrix is positive definite there due to Micchelli’s lemma. There is a hidden theoretical and numerical
connection of discrete moment bases to properly pivoted LU factorizations of matrices as in (14) of values
of polynomials (see also the papers [2, 3, 4], of de Boor and Ron), but we shall neither go into details nor
require the reader to figure this out before we proceed.

We now consider the polynomials

vj(x) :=

M∑
i=1

αji‖x− xi‖
2tj , 1 ≤ j ≤M (19)

that are of degree at most tj ≤ µ due to Lemma 9 and the definition of the discrete moment basis. They are
low–degree linear combinations of radial polynomials, and their definition depends crucially on the geometry
of X.

Lemma 13 The M ×M matrix with entries vj(xk) is nonsingular.

Proof: We multiply this matrix with the nonsingular M ×M matrix containing the discrete moment basis
α1, . . . , αM and get a matrix with entries

γjm =

M∑
i=1

M∑
k=1

αjiα
m
k ‖xi − xk‖2tj

for 1 ≤ j,m ≤ M . Consider m > j and use tm ≥ tj to see that γjm = 0 as soon as tm > tj , because
the entries can be written as values of a polynomial of degree 2tj − tj − tm < 0. Thus the matrix is block
triangular, and the diagonal blocks consist of entries αjiα

m
k ‖xi−xk‖2t with t = tj = tm. But these symmetric

submatrices must be definite due to our construction of a discrete moment basis. We even could have chosen
the basis such that the diagonal blocks are unit matrices, if we had used conjugation with respect to At. 2

Theorem 7 A least polynomial interpolation on X is possible using the functions vj of Lemma 13. These
are of degree at most µ = µ(X), and thus(

µ(X) + d− 1

d

)
< M ≤

(
µ(X) + d

d

)
≤
(
k0(X) + d

d

)
.

2

Example 3 Let us look at the special case with M = 4, d = 2 and points

x1 := (0, 0)T , x2 := (1, 0)T , x3 := (0, 1)T , x4 := (1/2, 1)T .

The discrete moment conditions on vectors α ∈ IR4 are

4∑
j=1

αj = 0 for all α ∈MC1,

4∑
j=1

αj = 0, α2 + α4/2 = 0, α3 + α4 = 0 for all α ∈MC2.

Furthermore we find MC3 = {0},MC2 = span {α4 := (1,−1,−2, 2)T }, MC0 = IR4 and MC1 \MC2 =
span {α2 := (1,−1, 0, 0)T , α3 := (1, 0,−1, 0)T }, such that a discrete moment basis of IR4 can be formed by
α1 := (1, 0, 0, 0)T with α2, α3, and α4 together with t0 = 0 < t1 = t2 = 1 < t3 = 2 = µ. From Theorem 6
we conclude that k0(X) = 1 · 2 + 2 · 1 = 4. MAPLE confirms this, and the Lagrange basis of the form (13)
comes out to be quadratic for all f that one could start with, but the result depends on f . For example,
the Lagrange basis function for the origin is

1− 2

9
x2 +

8

9
xy − 7

9
x− y for f(t) = e−t φ = Gaussian

1

37

(
37 + 32xy − 35y − 10x2 − 2y2 − 27x

)
for f(t) = 1/(1 + t) φ = inverse multiquadric.
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The Gaussian case coincides with the de Boor/Ron solution from section 6 of [3]. The method based on (19)
yields the basis function

1

19

(
19− 13x− 17y − 6x2 − 2y2 + 16xy

)
.

Thus we have different methods, but we note that the de Boor/Ron interpolation method coincides with the
limit of interpolation with shifted and scaled Gaussians. We shall prove this in the penultimate section.

6 Polynomial Reproduction

By (4), the Lagrange basis functions, if they exist, have analytic expansions

ucj(x) =

∞∑
m=0

bjm(x)cm

for small c with certain multivariate polynomials bjm depending on X and φ. We put this and the expansion
(12) into the defining equations (2) to get

M∑
j=1

∞∑
m=0

bjm(x)cm
∞∑
`=0

f`c
`‖xj − xk‖2`2 =

∞∑
s=0

fsc
s‖x− xk‖2s2 , 1 ≤ k ≤M

∞∑
s=0

cs
s∑
`=0

f`

M∑
j=1

bj,s−`(x)‖xj − xk‖2`2 =

∞∑
s=0

fsc
s‖x− xk‖2s2 , 1 ≤ k ≤M

and by comparison of coefficients we arrive at

s∑
`=0

f`

M∑
j=1

bj,s−`(x)‖xj − xk‖2`2 = fs‖x− xk‖2s2 , 1 ≤ k ≤M, s ≥ 0. (20)

In view of Lemma 12 it seems to be the upshot of (20) that the reproduction of all vectors Fs(x) of radial
polynomials (where for this section we introduce the factors f` instead of (−1)` into the A` matrices) is
possible from the data of all F`(xj), 1 ≤ j ≤ M, 0 ≤ ` ≤ s. This works if s ≥ µ by that Lemma, but
the reconstruction is not unique, and equations (20) describe a special selection of a reconstruction. It
is strange that the reconstruction via the above equations always works if convergence of the radial basis
function interpolation takes place, also for small s < µ, and that it can be chosen to have a convolution–type
structure.

We are interested in the special Lagrange basis polynomials

u0
j (x) = bj0(x), 1 ≤ j ≤M with bj0(xk) = δjk, 1 ≤ j, k ≤M

that arise in (20). We want to derive properties and defining equations. To this end, define the set

DX,φ :=

{
(α, s) ∈ IRM × IN0 : f`

M∑
k=1

αk‖xj − xk‖2` = 0 for all 0 ≤ ` < s, 1 ≤ j ≤M

}
and polynomials

pα,s(x) := fs

M∑
k=1

αk‖x− xk‖2s for all (α, s) ∈ DX,φ. (21)

Applying such a linear combination to (20) with respect to the points xk yields

M∑
j=1

bj,0(x)pα,s(xj) = pα,s(x), (α, s) ∈ DX,φ. (22)

Theorem 8 The limiting polynomial interpolation process reproduces all polynomials of the form (21). 2

Lemma 14 If f0 6= 0, the limiting polynomial interpolation process reproduces constants.

Proof: Consider elements (α, 0) ∈ DX,φ in (21). 2

Lemma 15 If f0, f1 6= 0, the limiting polynomial interpolation process reproduces all linear functions in the
linear span of the data.
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Proof: Consider elements (α, 1) ∈ DX,φ in (21). The restriction is
∑

k
αk = 0, and due to Lemma 14 we

have reproduction of constants. Thus we can reproduce any polynomial of the form

p(x) = ‖x− xk‖22 − ‖x− x`‖22 − ‖xk‖22 + ‖x`‖22 = xT (x` − xk)

for 1 ≤ k < ` ≤M . 2

Let us generalize this. For all s ≥ 0, define the spaces

Ds :=
{
α ∈ IRM : (α, s) ∈ DX,φ

}
, Rs := span {pα,s : α ∈ Ds} (23)

and the maps Ts : Ds → Rs with
Ts(α) := pα,s for all α ∈ Ds.

We have Ts(Ds) = Rs by definition, and we find that ker Ts = Ds+1. Note further that D0 = IRM . This
yields a decomposition sequence of IRM into a sequence of spaces isomorphic to R0, R1, . . . and we have to
see whether this sequence exhausts all of IRM . The decomposition can only fail if Ds = Dt for some s and
all t ≥ s, while Ds still is nonzero. But this cannot happen, because then there is some nonzero α ∈ IRM
which is in all Ds for all s ≥ 0. But then

0 =

M∑
j,k=1

αjαkφ(‖xj − xk‖2)

and this cannot hold for positive definite functions φ. Thus we know that there is a minimal finite
decomposition

Dσ+1 = {0} 6= Dσ ⊆ . . . ⊆ D1 ⊆ D0 = RM (24)

with factor spaces Rs = Ts(Ds) = Ds/Ds+1 for 0 ≤ s ≤ σ. Unfortunately, the spaces R0, R1, . . . turn out to
be overlapping, and we only know that

R :=

σ∑
s=0

Rs

is a polynomial space of dimension at most M that is reproduced by our interpolation.

The relation to discrete moments is that theD` spaces are the intersection of kernels of matrices A0, . . . , A`−1.
This is a different type of discrete moment condition, and in general σ ≤ µ. See Example 4 below.

If (22) were sufficient to determine the functions bj0 completely, one could cancel the factors fs for positive
definite functions and get a construction technique that is even independent of f and φ. But by looking at
cases like in Example 3 for positive definite functions one can see that the results actually depend on f and
φ. Thus one has to go back to (20). Here, one could write the equations for 1 ≤ k ≤ M and 0 ≤ s ≤ S
for some large positive S ≥ µ(X), and then by Lemma 12 one has a solvable system of M(S + 1) equations
for M(S + 1) unknowns. However, it turns out that there is some serious rank loss, while for large S the
particular functions bj0 come out uniquely when running a symbolic MAPLE program, leaving many bj` for
larger ` undetermined. An example follows below. It is a challenging open problem to find a good technique
to determine the bj` for all 1 ≤ j ≤M and small ` ≥ 0 in a finite and stable way.

We finally want to collect more information on the polynomials that are reproduced. Define, by splitting
(20), the polynomials

zk,s(x) := fs‖x− xk‖2s2 −
s−1∑
`=0

f`

M∑
j=1

bj,s−`(x)‖xj − xk‖2`2 = fs

M∑
j=1

bj,0(x)‖xj − xk‖2s2 (25)

for all 1 ≤ k ≤M, s ≥ 0. Then zk,s(xj) = fs‖xj − xk‖2s2 , 1 ≤ j, k ≤M and (20) implies

M∑
j=1

bj,0(x)zk,s(xj)

=

M∑
j=1

bj,0(x)fs‖xj − xk‖2s2

= fs‖x− xk‖2s2 −
s−1∑
`=0

f`

M∑
j=1

bj,s−`(x)‖xj − xk‖2`2

= zk,s(x),
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proving that all the zk,s(x) are reproduced. There are infinitely many of them, but they span a space of
dimension at most M , and thus their degree cannot increase indefinitely with s. So far, all examples indicate
that the limiting polynomial interpolants have degrees not exceeding the maximal discrete moment order µ,
but a proof is still missing.

Example 4 Let us continue our previous case in Example 3 of 4 points in 2D in view of the above
terminology. Looking at σ instead of µ, we find that D2 = {0}, D1 = MC1, D0 = IR4 = MC0, and
thus µ = 2 > σ = 1. We now look at (20) and (22) to determine the polynomials bj0(x), 1 ≤ j ≤ 4.
Here, we assume all f` to be nonzero. The system (22) leads to no more than 3 equations, and we can use
(α1, 0), (α2, 1), (α3, 1) ∈ DX,φ as pairs (α, s) there. The result consists of the three equations that describe
reproduction of linear polynomials:

b10(x, y) + b20(x, y) + b30(x, y) + b40(x, y) = 1
b20(x, y) + b40(x, y)/2 = x

b30(x, y) + b40(x, y) = y.
(26)

We thus turn to (20) in general, and discuss the cases s = 0, 1, 2, . . . one after the other. To start with, the
case s = 0 yields the first equation of (26). Assuming that this condition is already satisfied, we consider
s = 1 of (20) for α ∈ MC1 and find the two other equations of (26). Taking these for granted also, we
consider a general α there and get a new equation

f1‖(x, y)‖22 = f1

4∑
j=1

bj0(x, y)‖xj‖22 + f0

4∑
j=1

bj1(x, y)

that contains the new polynomial b1(x, y) :=
∑4

j=1
bj1(x, y) and has the explicit form

f1(x2 + y2) = f1

(
b20(x, y) + b30(x, y) +

5

4
b40(x, y)

)
+ f0b1(x, y).

We now have a new equation, but also a new variable. Thus the cases s = 0 and s = 1 do not yet lead to a
unique determination of the bj0. We have to turn to s = 2 in (20), but we do not want to introduce more
variables than absolutely necessary. We find

f2

4∑
k=1

αk‖(x, y)− xk‖42 = f2

4∑
j=1

bj0(x, y)

4∑
k=1

αk‖xj − xk‖42

+ f1

4∑
j=1

bj1(x, y)

4∑
k=1

αk‖xj − xk‖22

+ f0

4∑
j=1

bj2(x, y)

4∑
k=1

αk

and we would like to find a nonzero vector α ∈ IR4 such that

4∑
k=1

αk = 0,

4∑
k=1

αk‖xj − xk‖22 = c for all j, 1 ≤ j ≤ 4

with a constant c, because then we would have no new variable. Fortunately, the vector α4 = (1,−1,−2, 2)T

spanning MC2 does the job with c = −1/2, and with our new equation

f2

4∑
k=1

α4
k‖(x, y)− xk‖42 = f2

4∑
j=1

bj0(x, y)

4∑
k=1

α4
k‖xj − xk‖42

− f1
1

2
b1(x, y)

we now have five equations for five variables. This is the point where the solution of (20) leads to unique
determination of the bj0 and the sum over the bj1. Note that we are still far from determining all the bj`,
but we are interested in the bj0 only and succeeded to get away with small s in (20). This principle worked
in all cases that we tested with MAPLE, and it directly yielded the Lagrange polynomial bases via symbolic
computation.
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7 The method of de Boor and Ron revisited

The goal of this section is to prove Theorem 2. For this we require at least a scaled version of the de Boor/Ron
technique, and we take the opportunity to rephrase with slightly increased generality.

For all α ∈ ZZd0 let wα be a positive real number, and consider the inner product

(p, q)w :=
∑
α∈ZZd0

1

wα
(Dαp)(0)(Dαq)(0)

on the space IP d∞ of all d–variate polynomials. The de Boor/Ron interpolant arises in the special case
wα = α!. Now we want to link the theory to radial basis function techniques. If we assume∑

α∈ZZd0

wα
α!2

<∞

and define the kernel

Kw(x, y) :=
∑
α∈ZZd0

wα
xα

α!

yα

α!
, (27)

all polynomials p ∈ IP d∞ are reproduced on [−1, 1]d via

p(x) = (p,Kw(x, ·))w (28)

and this identity carries over to the Hilbert space completion

Hw :=

g ∈ C∞(IRd) : g(x) =
∑
α∈ZZd0

(Dαg)(0)
xα

α!
,
∑
α∈ZZd0

1

wα
(Dαg)2(0) <∞


of the polynomials under the above inner product. The kernel Kw is positive definite on [−1, 1]d, and larger
domains can be treated by scaling. Since polynomials separate points, it is clear that for all finite sets
X = {x1, . . . , xM} ⊂ [−1, 1]d we have linear independence of the functions Kw(·, xj), and interpolation in
X by the span of these functions is uniquely possible.

So far, we used standard arguments of radial basis function theory. In the papers of de Boor and Ron,
transition to a polynomial interpolation process is done via truncation, not via passing to the limit of a
scaling. For all functions g from Hw the notation

g[k](x) :=
∑

α ∈ ZZd0
|α| = k

(Dαg)(0)
xα

α!

is introduced, while g↓ stands for the nonzero function g[k] with minimal k. For a finite set X =
{x1, . . . , xM} ⊂ [−1, 1]d the spaces

Ew,X := span {Kw(x, ·) : x ∈ X}, Pw,X := span {g↓ : g ∈ Ew,X}

are introduced, and Pw,X is a space of polynomials.

Theorem 9 Interpolation on X by functions in Pw,X is uniquely possible.

Proof: Assume that there is some nonzero p ∈ Pw,X such that p = gp↓ and p|X = 0. Then (28) yields
orthogonality (p, g)w = 0 for all g ∈ Ew,X , and we have the contradiction

0 = (p, gp)w = (gp↓, gp)w = (gp↓, gp↓)w.

So far, we have followed the proof of de Boor and Ron, but now we want to use a discrete moment basis
α1, . . . , αM to link the process with what we have done in previous sections. We define functions

vr(y) :=

M∑
j=1

αrjKw(xj , y) =
∑
|α|≥tr

wα
yα

α!

M∑
j=1

αrj
xαj
α!
, gr := vr↓, 1 ≤ r ≤M. (29)
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Due to the property of a discrete moment basis we see that not all of the quantities

cα,r :=

M∑
j=1

αrj
xαj
α!

for |α| = tr can vanish, because otherwise αr ∈MCtr+1. Thus we have the homogeneous representation

gr(y) = vr↓ =
∑
|α|=tr

wαcα,r
yα

α!
(30)

and (gr, gs)w = 0 for tr 6= ts. The matrix formed by the (gr, gs)w is a positive semidefinite block–diagonal
Gramian. To prove its definiteness, we can focus on a single diagonal block with t = tr = ts. Collecting
the indices r with tr = t into a set It, we assert linear independence of the functions gr for r ∈ It. For a
vanishing linear combination

0 =
∑
r∈It

γrgr(y)

=
∑
r∈It

γr
∑
|α|=t

wαcα,r
yα

α!

=
∑
|α|=t

yα

α!
wα
∑
r∈It

γrcα,r

=
∑
|α|=t

yα

α!
wα
∑
r∈It

γr

M∑
j=1

αrj
xαj
α!

=
∑
|α|=t

yα

α!
wα

M∑
j=1

(∑
r∈It

γrα
r
j

)
xαj
α!

we conclude that
∑

r∈It
γrα

r is a vector in MCt+1, and this can hold only if the coefficients are zero. Thus
the space Pw,X contains the M linearly independent homogeneous polynomials g1, . . . , gM of increasing
degrees 0 = t1 ≤ · · · ≤ tM = µ, and the theorem is proven. Due to Theorem 5, the degree is “least”, as
known from the de Boor/Ron papers. 2

We now proceed towards proving that the limit of interpolants by Gaussians is equal to the de Boor/Ron
polynomial interpolant. We need something that links kernels of the form (27) to radial kernels.

Lemma 16 If φ is a positive definite analytic radial basis function that can be written via an analytic
function f satisfying (1) and (12), then

f(xT y) =
∑
α∈ZZd0

f |α|(0)

α!
xαyα =

∑
α∈ZZd0

f|α|x
αyα (31)

for all x, y ∈ IRd.

Proof: We use the Bernstein–Widder representation

f(r) =

∫ ∞
0

e−rtdµ(t), r ≥ 0

to get

(−1)jf (j)(0) = (−1)jj!fj =

∫ ∞
0

tjdµ(t) ∈ (0,∞) for all j ≥ 0

and similarly, factoring the exponential in the integral,

Dα
x f(xT y) = yα

∫ ∞
0

(−1)|α|t|α|e−tx
T ydµ(t)

and
Dα
x f(xT y)|x=0 = yαf |α|(0) = yαα!f|α|

where Dα
x takes derivatives of order α with respect to x. The assertion follows from putting the result into

the power series expansion at zero. 2

At first sight, the above result is disappointing, because one cannot easily use (31) in (27), since the
coefficients in (31) are alternating. However, a closer look reveals that the major part of the de Boor/Ron
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theory does not rely on the signs of the coefficients. It is the link to radial basis functions as reproducing
kernels that does not work without further arguments. This has a positive consequence: the generalized
de Boor/Ron approach as given at the start of the section will yield many new cases of positive definite
non–radial interpolants with polynomial truncations that furnish least polynomial interpolants. On the
downside, we cannot expect to find a direct link between interpolation by general positive definite radial
basis functions and the generalized de Boor/Ron method.

But for Gaussians, we can add some more work, factoring

exp(−c‖xj − xk‖22) = exp(−c‖xj |22) · exp(2cxTj xk) · exp(−c‖xk‖22).

We then rewrite the Lagrange system

M∑
j=1

ucj(x) exp(−c‖xj − xk‖22) = exp(−c‖x− xk‖22), 1 ≤ k ≤M

in the form
M∑
j=1

zcj (x) exp(2cxTj xk) =

M∑
j=1

ucj(x) exp(−c(‖xj‖2 − ‖x‖2)) exp(2cxTj xk) = exp(2cxTxk), 1 ≤ k ≤M

with zcj (x) := ucj(x) exp(−c(‖xj‖2−‖x‖2)), 1 ≤ j ≤M . Now we can use the technique of the previous lemma
directly, putting in the expansions for the exponential and working with the kernel Kc(x, y) := exp(2cxty)
in our presentation of the de Boor/Ron technique, with a slight abuse of notation. This implies that the
functions zcj (x) are Lagrangian interpolants in the span of the Kc(xj , x) = exp(2cxtjx). Any interpolation
by scaled Gaussians can be converted by the above transformation to and from an interpolation using the
kernel Kc.

We now look at what happens if the de Boor/Ron truncation process is carried out on interpolants defined
via Kc. The functions in (30) come out as

gcr(y) =
∑
|α|=tr

wcαcα,r
yα

α!

=
∑
|α|=tr

(2c)|α|

α!
cα,r

yα

α!

= (2c)tr
∑
|α|=tr

1

α!
cα,r

yα

α!

= (2c)trgdBRr (y)

i.e. they are just scalar multiples of the functions gdBRr of the de Boor/Ron process. Thus the polynomial
space spanned by truncation of the Kc is independent of c and coincides with the de Boor/Ron polynomial
interpolation space.

We have successfully moved from interpolation by Gaussian radial basis functions to interpolation by scaled
exponentials, and we have seen that the truncation of the latter is the de Boor/Ron polynomial space. But
we now have to investigate the limit of the interpolants spanned by the scaled exponentials Kc(xj , ·) for
c→ 0 to see whether they converge towards the de Boor/Ron truncation.

We go back to (29) to define functions vcr as

vcr(y) :=

M∑
j=1

αrjKc(xj , y)

=
∑
|α|≥tr

(2c)tr

α!

yα

α!
cα,r

=
∑
s≥tr

(2c)s
∑
|α|=s

1

α!

yα

α!
cα,r

such that

lim
c→0

vcr(y)

(2c)tr
= gdBRr (y), 1 ≤ r ≤M.

This means that the space spanned by the Kc(xj , ·) contains a basis that converges towards a basis of the
de Boor/Ron polynomial space for c→∞. If the Lagrange basis for interpolation in the span of the Kc(xj , ·)
is written in terms of this basis, it converges towards a polynomial limit. This ends the proof of Theorem 2.
2
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8 Preconditioning

The transition from the Gaussian system to the scaled basis
vcr(y)

(2c)tr
should be useful as a preconditioning

technique. In general, we show in this section how to use a discrete moment basis for preconditioning badly
conditioned matrices arising from interpolation by smooth radial basis functions.

We go back to the beginning of the paper and precondition the matrix Ac,X,X arising in (2) by a scaled
discrete moment basis

c−t1/2α1, . . . , c−tM/2αM (32)

in the following way. If we put the discrete moment basis into an M ×M matrix Bc and form the positive
definite symmetric matrix Z(c) := BcAc,X,XB

T
c , the matrix entries will be

zrs(c) :=

M∑
j,k=1

αrjc
−tr/2αskc

−ts/2φc(‖xj − xk‖2) 1 ≤ r, s ≤M

=

∞∑
n=0

fnc
n−tr/2−ts/2

M∑
j,k=1

αrjα
s
k‖xj − xk‖2n2

=

∞∑
n = 0

2n ≥ tr + ts

fnc
n−tr/2−ts/2

M∑
j,k=1

αrjα
s
k‖xj − xk‖2n2

with well–defined limits

zrs(0) =

{
f(tr+ts)/2

∑M

j,k=1
αrjα

s
k‖xj − xk‖tr+ts

2 tr + ts even

0 else

}
for c→ 0. The matrix Z(0) is positive semidefinite by construction, and we assert

Theorem 10 The matrix Z(0) is positive definite.

Proof: We use the proof technique of Theorem 6. The product of all eigenvalues of Ac,X,X decays with
exponent k0(X) as in (18), while the maximum eigenvalue stays bounded above independent of c. But our

matrix transformation performs a multiplication of the spectral range by c−k0(X), because k0(X) =
∑M

j=1
tj

is just another way to write (18). Thus the smallest eigenvalue of the product must stay away from zero
when c → 0. But since the matrix Z(0) is well–defined, the maximal eigenvalue of the product Z(c) must
be bounded, and Z(0) altogether has a strictly positive spectrum. 2

Example 5 If we go back to the four points in IR2 of Examples 3 and 4 and scale the discrete moment
basis as in (32) via

Bc :=


1 0 0 0
1√
c
− 1√

c
0 0

1√
c

0 − 1√
c

0
1
c

− 1
c

− 2
c

2
c

 ,

MAPLE produces a limit matrix

Z(0) :=

 1 0 0 1
2

0 2 0 0
0 0 2 0
1
2

0 0 19
4

 .

for Gaussians and

Z(0) :=

 1 0 0 − 1
4

0 −1 0 0
0 0 −1 0
− 1

4
0 0 − 19

16


for (negative definite) inverse multiquadrics with β = −1. If we take four equidistant points on the line
[0, 1]× {0}, we find

Z(0) :=

 1 0 − 2
9

0
0 2

9
0 − 4

27

− 2
9

0 4
27

0
0 − 4

27
0 40

243

 for Bc :=


1 0 0 0
1√
c
− 1√

c
0 0

1
c

− 2
c

1
c

0
1
c
√
c
− 3
c
√
c

3
c
√
c
− 1
c
√
c

 .

in case of Gaussians. The discrete moment basis now contains divided differences, and the zero structure is
different from the previous case, because we have tj = j − 1, 1 ≤ j ≤ 4 here.
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