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Abstract

This contribution gives a partial survey over the native spaces associated
to (not necessarily radial) basis functions. Starting from reproducing kernel
Hilbert spaces and invariance properties, the general construction of native
spaces is carried out for both the unconditionally and the conditionally posi-
tive definite case. The definitions of the latter are based on finitely supported
functionals only. Fourier or other transforms are not required. The depen-
dence of native spaces on the domain is studied, and criteria for functions
and functionals to be in the native space are given. Basic facts on optimal
recovery, power functions, and error bounds are included.

1 Introduction

For the numerical treatment of functions of many variables, radial basis functions
are useful tools. They have the form φ(‖x − y‖2) for vectors x, y ∈ IRd with a
univariate function φ defined on [0,∞) and the Euclidean norm ‖ · ‖2 on IRd.
This allows to work efficiently for large dimensions d, because the function boils
the multivariate setting down to a univariate setting. Usually, the multivariate
context comes back into play by picking a large number M of points x1, . . . , xM

in IRd and working with linear combinations

s(x) :=

M
∑

j=1

λjφ(‖xj − x‖2).
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In certain cases, low–degree polynomials have to be added, but we give details
later. Typical examples for radial functions φ(r) on r = ‖x− y‖2, x, y ∈ IRd are

thin–plate splines: rβ log r, β > 0, β ∈ 2 IN [1]

rβ , β > 0, β /∈ 2 IN [1]

multiquadrics: (r2 + c2)β/2, β > 0, β /∈ 2 IN [6]

inverse multiquadrics: (r2 + c2)β/2, β < 0, [6]

Gaussians: exp(−βr2), β > 0,

Sobolev splines: rk−d/2Kk−d/2(r), k > d/2

Wendland function: (1 − r)4+(1 + 4r), d ≤ 3

Another important case are zonal functions on the (d − 1)–dimensional sphere
Sd−1 ⊂ IRd. These have the form φ(xT y) = φ(cos(α(x, y))) for points x, y on
the sphere spanning an angle of α(x, y) ∈ [0, π] at the origin. Here, the symbol T

denotes vector transposition, and the function φ should be defined on [−1, 1]. Peri-
odic multivariate functions can also be treated, e.g. by reducing them to products
of univariate periodic functions.

All of these cases of basis functions share a common theoretical foundation
which forms the main topic of this paper. The functions all have a unique associated
“native” Hilbert space of functions in which they act as a generalized reproducing
kernel. The different special cases (radiality, zonality) are naturally related to
geometric invariants of the native spaces. The paper will thus start in section 2
with reproducing kernel Hilbert spaces and look at geometric invariants later in
section 3.

But most basis functions are constructed directly and do not easily provide
information on their underlying native space. Their main properties are symme-
try and (strict) positive definiteness (SPD) or conditionally positive definiteness
(CPD). These notions are defined without any relation to a Hilbert space, and we
then have to show how to construct the native space, prove its uniqueness, and
find its basic features. We do this for SPD functions in section 4 and for CPD
functions in section 5. The results mostly date back to classical work on repro-
ducing kernel Hilbert spaces and positive definite functions (see e.g. [12], [17]).
We compile the necessary material here to provide easy access for researchers and
students. Some new results are included, and open problems are pointed out. In
particular, we show how to modify the given basis function in order to go over
from the conditionally positive definite case to the (strictly) positive definite case.
There are different ways to define native spaces (see [10] for comparisons), but
here we want to provide a technique that is general enough to unify different con-
structions (e.g. on the sphere [3] or on Riemannian manifolds [2],[13]). We finish
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with a short account of optimal recovery of functions in native spaces from given
data, and provide the corresponding error bounds based on power functions.

The notation will strictly distinguish between functions f, g, . . . and function-
als λ, µ, . . . as real–valued linear maps defined on functions. Spaces of functions
will be denoted by uppercase letters like F,G, . . ., and calligraphic letters F ,G, . . .
occur as soon as the spaces are complete. Spaces with an asterisk are dual spaces,
while an asterisk at lowercase symbols indicates optimized quantities.

2 Reproducing Kernel Hilbert Spaces

Let Ω ⊆ IRd be a quite general set on which we consider real–valued functions
forming a real Hilbert space H with inner product (., .)H. Assume further that for
all x ∈ Ω the point evaluation functional δx : f → f(x) is continuous in H, i.e.

δx ∈ H∗ for all x ∈ Ω (2.1)

with the dual of H denoted by H∗. This is a reasonable assumption if we want to
apply numerical methods using function values. Note, however, that techniques like
the Rayleigh–Ritz method for finite elements work in Hilbert spaces where point
evaluaton functionals are not continuous. We shall deal with this more general
situation later.

If (2.1) is satisfied, the Riesz representation theorem implies

Theorem 2.1 If a Hilbert space of functions on Ω allows continuous point eval-
uation functionals, it has a symmetric reproducing kernel Φ : Ω × Ω → IR with
the properties

Φ(x, ·) ∈ H

f(x) = (f,Φ(x, ·))H
Φ(x, y) = (Φ(x, ·),Φ(y, ·))H = Φ(y, x)

Φ(x, y) = (δx, δy)H∗

(2.2)

for all x, y ∈ Ω, f ∈ H.

The theory of reproducing kernel Hilbert spaces is well covered in [12], for
instance. In the terminology following below, a reproducing kernel Hilbert space
is the native space with respect to its reproducing kernel. This is trivial as long
as we start with a Hilbert space, but it is not trivial if we start with a function
Φ : Ω× Ω → IR.

3 Invariance Properties

In many cases, the domain Ω of functions allows a group TT of geometric transfor-
mations, and the Hilbert space H of functions on Ω is invariant under this group.
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This means
f ◦ T ∈ H

(f ◦ T, g ◦ T )H = (f, g)H
(3.1)

for all f, g ∈ H, T ∈ TT. The following simple result has important implications
for the basis functions on various domains:

Theorem 3.1 If a Hilbert space H of functions on a domain Ω is invariant under
a group TT of transformations on Ω in the sense of (3.1), and if H has a reproducing
kernel Φ, then Φ is invariant under TT in the sense

Φ(x, y) = Φ(Tx, T y) for all x, y ∈ Ω, T ∈ TT .

Proof. The assertion easily follows from

f(x) = (f,Φ(x, ·))H
= (f ◦ T−1)(Tx) = (f ◦ T−1,Φ(Tx, ·))H

= (f ◦ T−1 ◦ T,Φ(Tx, T ·))H
= (f,Φ(Tx, T ·))H

for all x ∈ Ω, T ∈ TT, f ∈ H.

By some easy additional arguments one can read off the following invariance
properties inherited by reproducing kernels Φ from their Hilbert spaces H on Ω:

• Invariance on Ω = IRd under translations from IRd leads to translation–

invariant functions Φ(x, y) = φ(x − y) with φ(x) = φ(−x) : IRd → IR.

• In case of additional invariance under all orthogonal transformations we get
radial functions Φ(x, y) = φ(‖x − y‖2) with φ : [0,∞) → IR. Thus radial
basis functions arise naturally in all Hilbert spaces on IRd which are invariant
under Euclidean rigid–body motions.

• Invariance on the sphere Sd−1 under all orthogonal transformations leads to
zonal functions Φ(x, y) = φ(xT y) for φ : [−1, 1] → IR.

• Spaces of periodic functions induce periodic reproducing kernels.

See [5] for basis functions on topological groups, and see [3] for a review of results
on the sphere. The paper [13] introduces the theory of basis functions on general
manifolds, and corresponding error bounds are in [2].
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4 Native Spaces of Positive Definite Functions

Instead of a single point x ∈ Ω with a single evaluation functional δx ∈ H∗ we
now consider a set {x1, . . . , xM} of M distinct points in Ω and look at the point
evaluation functionals δx1

, . . . , δxM
.

Theorem 4.1 In a real vector space H of functions on some domain Ω the fol-
lowing properties concerning a set X = {x1, . . . , xM} of M distinct points are
equivalent:

1. There are functions f ∈ H which attain arbitrary values at the points xj ∈
{x1, . . . , xM}.

2. The points in X can be separated, i.e.: for all xj ∈ X there is a function
fj ∈ H vanishing on X except for xj .

3. The point evaluation functionals δx1
, . . . , δxM

∈ H∗ are linearly independent.

Now let H be a reproducing kernel Hilbert space of real–valued functions on
Ω. Furthermore, let one of the properties in Theorem 4.1 be satisfied for all finite
sets X = {x1, . . . , xM} ⊆ Ω. Then the matrix

AΦ,X = (Φ(xk, xj))1≤j,k≤M =
(

(δxj
, δxk

)H∗

)

1≤j,k≤M
(4.1)

is a Gramian matrix formed of linearly independent elements. Thus it is symmetric
and positive definite.

But the above property can be reformulated independent of the Hilbert space
setting:

Definition 4.2 A function Φ : Ω × Ω → IR is symmetric and (strictly)

positive definite (SPD), if for arbitrary finite sets X = {x1, . . . , xM} ⊆ Ω of
distinct points the matrix AΦ,X = (Φ(xk, xj))1≤j,k≤M is symmetric and positive
definite.

Definition 4.3 If a symmetric (strictly) positive definite function Φ : Ω×Ω → IR
is the reproducing kernel of a real Hilbert space H of real–valued functions on Ω,
then H is the native space for Φ.

We can collect the above arguments into

Theorem 4.4 If a real Hilbert space H of real–valued functions on some domain
Ω allows continuous point evaluation functionals which are linearly independent
when based on distinct points, the space has a symmetric and (strictly) positive
definite reproducing kernel Φ and is the native space for Φ.

Except for the unicity stated above, this is easy since we started from a given
Hilbert space. Things are more difficult when we start with an SPD function Φ
and proceed to construct its native space. The basic idea for this will first appear
in the uniqueness proof for the native space:
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Theorem 4.5 The native space for a given SPD function Φ is unique if it exists,
and it then coincides with the closure of the space of finite linear combinations of
functions Φ(x, ·), x ∈ Ω under the inner product defined via

(Φ(x, ·),Φ(y, ·))H = Φ(x, y) for all x, y ∈ Ω. (4.2)

Proof. Let H be a Hilbert space of functions on Ω which has Φ as a symmetric
positive definite kernel. Clearly all finite linear combinations of functions Φ(x, ·)
are in H, and the inner product on these functions depends on Φ alone because of
(2.2). We can thus use (4.2) as a redefinition for the inner product on the subspace
of linear combinations of functions Φ(x, ·). If H were larger than the closure of the
span of these functions, there would be a nonzero f ∈ H which is orthogonal to
all Φ(x, ·). But then f(x) = (f,Φ(x, ·))H = 0 for all x ∈ Ω.

Theorem 4.5 shows that the native space is the closure of the functions we work
with in applications, i.e.: the functions Φ(x, ·) for x ∈ Ω fixed. Everything that can
be approximated by functions Φ(x, ·) is in the native space. But the above result
leaves us to show existence of the native space for any SPD function Φ. To do this,
we mimic (4.2) to define an inner product

(Φ(x, ·),Φ(y, ·))Φ = Φ(x, y) for all x, y ∈ Ω. (4.3)

on functions Φ(x, ·). This inner product depends on Φ alone, and we thus use a
slightly different notation. It clearly extends to an inner product on the space

FΦ(Ω) :=







M
∑

j=1

λjΦ(xj , ·) λj ∈ IR, M ∈ IN, xj ∈ Ω







(4.4)

of all finite linear combinations of such functions, because Φ is an SPD function.
We keep Φ and Ω in the notation, because we want to study later how native spaces
depend on Φ and Ω. The abstract Hilbert space completion FΦ(Ω) of this space
then is a Hilbert space with an inner product that we denote by (·, ·)Φ again, but
we still have to interpret the abstract elements of FΦ(Ω) as functions on Ω. But
this is no problem since the point evaluation functionals δx extend continuously
to the completion, and the equation

δx(f) = (f,Φ(x, ·))Φ for all x ∈ Ω, f ∈ FΦ(Ω) (4.5)

makes sense there. We just define f(x) to be the right–hand side of (4.5). Alto-
gether we have

Theorem 4.6 Any SPD function Φ on some domain Ω has a unique native space.
It is the closure of the space FΦ(Ω) of (4.4) under the inner product (4.3). The
elements of the native space can be interpreted as functions via (4.5).
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There are various other techniques to define the native space. See [10] for a
comparison and embedding theorems.

It is one of the most challenging research topics to deduce properties of the
native space from properties of Φ. For instance, Corollary 8.3 below will show
that continuity of Φ on Ω × Ω implies that all functions in the native space are
continuous on Ω. Other interesting topics are embedding theorems and density
results for native spaces. See [10] for a starting point.

5 Native Spaces of Conditionally Positive Defi-

nite Functions

Several interesting functions of the form Φ(x, y) given in section 1, e.g.: Duchon’s
thin–plate splines or Hardy’s multiquadrics are well–defined and symmetric on
Ω = IRd but not positive definite there. The quadratic form defined by the matrix
in (4.1) is only positive definite on a certain subspace of IRM . For later use, we
make the corresponding precise definition somewhat more technical than necessary
at first sight.

Let P be a finite–dimensional subspace of real–valued functions on Ω. In ap-
plications on Ω ⊆ IRd we shall usually consider P = IPd

m, the space of polynomials
of order at most m, while in periodic cases we use trigonometric polynomials,
or spherical harmonics on the sphere. Then LP(Ω) denotes the space of all linear
functionals with finite support in Ω that vanish on P . For convenience, we describe
such functionals by the notation

λX,M : f →
M
∑

j=1

λjf(xj), λX,M (P) = {0} (5.1)

for finite sets X = {x1, . . . , xM} ⊆ Ω and coefficients λ ∈ IRM . Note that these
functionals form a vector space over IR under the usual operations.

Definition 5.1 A function Φ : Ω× Ω → IR is symmetric and conditionally

positive definite (CPD) with respect to P, if for all λX,M ∈ LP(Ω) \ {0} the
value of the quadratic form

M
∑

j,k=1

λjλkΦ(xj , xk) = λx
X,Mλy

X,MΦ(x, y)

is positive.

Here, the superscript x denotes application of the functional with respect to the
variable x. The classical definition of conditional positive definiteness of some order
m is related to the special case P = IPd

m on Ω ⊆ IRd.
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From now on we assume Φ : Ω × Ω → IR to be CPD with respect to a
finite–dimensional space P of functions on Ω. Because Φ is conditionally positive
definite, we can define an inner product

(λX,M , µY,N )Φ :=
M
∑

j=1

N
∑

k=1

λjµkΦ(xj , yk) = λx
X,Mµy

Y,NΦ(x, y) (5.2)

on the space LP(Ω). Furthermore, we can complete LP(Ω) to a Hilbert space
LΦ,P(Ω), and we denote the extended inner product on LΦ,P (Ω) by (·, ·)Φ again.
Note that LP(Ω) as a vector space does not depend on Φ, but the completion
LΦ,P(Ω) does, because Φ enters into the inner product. Now we can form inner
products (λ, µ)Φ for all abstract elements λ, µ of the space LΦ,P(Ω), but we still
have no functions on Ω, because we cannot evaluate (λ, δx)Φ since δx is in general
not in LΦ,P (Ω).

A simple and direct, but not ultimately general workaround for this problem
uses brute force to construct for all x ∈ Ω a substitute δ(x) ∈ LP(Ω) for a point
evaluation functional. We start with the assumption of existence of a fixed set
Ξ = {ξ1, . . . , ξq} ⊆ Ω of q = dimP points of Ω which is unisolvent for P . This
means that any function p ∈ P can be uniquely reconstructed from its values on Ξ.
This is no serious restriction to any application. In case of classical multiquadrics
or thin–plate splines in two dimensions it suffices to fix three points in Ω which
are not on a line. By picking a Lagrange–type basis p1, . . . , pq of P one can write
the reconstruction as

p(x) =

q
∑

j=1

pj(x)p(ξj), for all p ∈ P , x ∈ Ω. (5.3)

This defines for all x ∈ Ω a very useful variation

δ(x)(f) := f(x)−
q
∑

j=1

pj(x)f(ξj) =



δx −
q
∑

j=1

pj(x)δξj



 (f) (5.4)

of the standard point evaluation functional at x defined on all functions f on Ω.
This functional annihilates functions from P and lies in LP(Ω) because it is finitely
supported. Furthermore, we have

δ(ξj) = 0 for the points ξj ∈ Ξ. (5.5)

We now can go on with our previous argument, because we can look at the
function

RΦ,Ω(λ)(x) := (λ, δ(x))Φ, x ∈ Ω (5.6)

which is well–defined for all abstract elements λ ∈ LΦ,P(Ω). It defines a map RΦ,Ω

from the abstract space LΦ,P (Ω) into some space of functions on Ω. We have chosen
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the notation RΦ,Ω because the mapping will later be continuously extended to the
Riesz map on the dual of the native space. Let us look at the special situation for
λ = λX,M ∈ LP(Ω). Then

RΦ,Ω(λX,M )(x) = (λX,M , δ(x))Φ

=

M
∑

j=1

λj

(

Φ(x, xj)−
q
∑

k=1

pk(x)Φ(ξk , xj)

)

= λy
X,MΦ(x, y)−

q
∑

k=1

pk(x)λ
y
X,MΦ(ξk, y)

(5.7)

shows the fundamental relation

µY,NRΦ,Ω(λX,M ) = (λX,M , µY,N)Φ (5.8)

for all λX,M , µY,N ∈ LP(Ω). It shows immediately that RΦ,Ω is injective on LP(Ω).
We want to generalize this identity to hold on the completion LΦ,P(Ω), but for
this we have to define a norm or inner product on the range of RΦ,Ω.

This is easy, since RΦ,Ω is injective on LP(Ω). We can define an inner product
on the range by

(RΦ,Ω(λ), RΦ,Ω(µ))Φ := (λ, µ)Φ for all λ, µ ∈ LΦ,P (Ω),

where we extended the definition already to the completion LΦ,P(Ω) and used the
same notation again, because we will never mix up functions with functionals here.

The space FΦ,P(Ω) := RΦ,Ω(LP(Ω)) for a CPD function Φ with respect to
a space P of functions on Ω will be the major part of the native space to be
constructed. It is a Hilbert space by definition, and we have

RΦ,Ω : LΦ,P(Ω) := LP(Ω) → FΦ,P(Ω) (5.9)

as the Riesz mapping and can generalize (5.8) to

µ(RΦ,Ω(λ)) = (RΦ,Ω(µ), RΦ,Ω(λ))Φ = (µ, λ)Φ for all λ, µ ∈ LΦ,P (Ω) (5.10)

by going continuously to the completions. We thus have an interpretation of the
Hilbert space FΦ,P(Ω) as a space of functions and the Hilbert space LΦ,P (Ω) as
a space of functionals on FΦ,P(Ω). Furthermore, RΦ,Ω is the Riesz map and the
spaces form a dual pair.

But we still do not have a reproduction property like (2.2), and the space
FΦ,P(Ω) has the additional and quite superficial property that all its functions
vanish on Ξ due to (5.5) and (5.6). But the latter property shows that P and
FΦ,P(Ω) form a direct sum of spaces.

Definition 5.2 The native space NΦ,P(Ω) for a conditionally positive definite
function Φ on some domain Ω with respect to a finite–dimensional function space
P consists of the sum of P with the Hilbert space FΦ,P(Ω) from (5.9).
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Note that this coincides with Definition 4.3 for P = {0}, if we take Theorem
4.6 into account. To derive further properties of the native space, including a
generalized notion of the reproduction equation (4.5), we use (5.3) to define a
projector

ΠP(f)(x) :=

q
∑

j=1

pj(x)f(ξj) for all f : Ω → IR, x ∈ Ω

onto P with the property that f − ΠP (f) always vanishes on Ξ. Thus Id − ΠP

projects functions in the native space onto the range of RΦ,Ω, i.e. on FΦ,P(Ω).
For all functions f ∈ NΦ,P (Ω) there is some λf ∈ LΦ,P (Ω) such that we have
f − ΠPf = RΦ,Ω(λf ), and the value of this function at some point x ∈ Ω is
(λf , δ(x))Φ = (RΦ,Ω(λf ), RΦ,Ω(δ(x)))Φ by definition. This implies

Theorem 5.3 Every function f in the native space of a conditionally positive
definite function Φ on some domain Ω with respect to a finite–dimensional function
space P has the representation

f(x) = (ΠPf)(x) + (f −ΠPf,RΦ,Ω(δ(x)))Φ for all x ∈ Ω (5.11)

which is a generalized Taylor–type reproduction formula.

Definition 5.4 The dual N ∗
Φ,P(Ω) of the native space consists of all linear func-

tionals λ defined on the native space NΦ,P(Ω) such that the functional λ− λ ◦ΠP

is continuous on the Hilbert subspace FΦ,P(Ω).

Note that the functionals λ ∈ N ∗
Φ,P(Ω) are just linear forms on NΦ,P(Ω) in the

sense of linear algebra. They are not necessarily continuous on FΦ,P(Ω) with re-
spect to the norm ‖ · ‖Φ, because in that case they would have to vanish on P .
This would rule out point–evaluation functionals, for instance. Our special con-
tinuity requirement avoids this pitfall and makes point–evaluation functionals δx
well–defined in the dual, but in general not continuous. However, the functional
δ(x) = δx − δx ◦ΠP is continuous instead.

For all λ ∈ N ∗
Φ,P (Ω) we can consider the function fλ := RΦ,Ω(λ− λ ◦ΠP ) in

FΦ,P(Ω). By (5.6) and (5.2) it can be explicitly calculated via

fλ(x) = RΦ,Ω(λ− λ ◦ΠP)(x)

= (λ− λ ◦ΠP , δ(x))Φ

= (λ− λ ◦ΠP)
yδz(x)Φ(y, z)

(5.12)

By (5.8) for f = RΦ,Ω(µ), it represents the functional λ in the sense

(λ− λ ◦ΠP )(f) = (f, fλ)Φ for all f ∈ FΦ,P(Ω). (5.13)

Altogether, the action of functionals can be described by
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Theorem 5.5 Each functional λ in the dual N ∗
Φ,P(Ω) of the native space NΦ,P(Ω)

of a conditionally positive definite function Φ on some domain Ω with respect to a
finite–dimensional function space P acts via

λ(f) = (λ ◦ΠP )f + (f −ΠPf,RΦ,Ω(λ− λ ◦ΠP ))Φ

= (λ ◦ΠP )f + (f −ΠPf, λ
xRΦ,Ω(δ(x)))Φ

on all functions f ∈ NΦ,P (Ω).

Proof. The first formula follows easily from (5.12) and (5.13). For the second, we
only have to use (5.6), (5.5), and (5.8) to prove

λxRΦ,Ω(δ(x))(t) = λxRΦ,Ω(δ(t))(x)

= (λ− λ ◦ΠP)
xRΦ,Ω(δ(t))(x)

= (δ(t), RΦ,Ω(λ− λ ◦ΠP))Φ

= RΦ,Ω(λ− λ ◦ΠP)(t) = fλ(t)

(5.14)

for all t ∈ Ω.

Note how Theorem 5.5 generalizes Theorem 5.3 to arbitrary functionals from the
dual of the native space. The second form is somewhat easier to apply, because
the representer fλ of λ can be calculated via (5.14).

6 Modified kernels

The kernel function occurring in Theorem 5.3 is by definition

RΦ,Ω(δ(x))(y) = (δ(x), δ(y))Φ =: Ψ(x, y), (6.1)

and we call Ψ the reduction of Φ. It has the explicit representation

Ψ(x, y) = Φ(x, y)−
q
∑

j=1

pj(x)Φ(ξj , y)−
q
∑

k=1

pk(y)Φ(x, ξk)

+

q
∑

j=1

q
∑

k=1

pj(x)pk(y)Φ(ξj , ξk)

= (Id−ΠP )
x(Id−ΠP)

yΦ(x, y)

(6.2)

for all x, y ∈ Ω because we can do the evaluation of (6.1) via (5.2) and (5.4).
Furthermore, equation (6.1) implies

Ψ(x, y) = (RΦ,Ωδ(x), RΦ,Ωδ(y))Φ = (Ψ(x, ·),Ψ(y, ·))Φ
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as we would expect from (2.2). A consequence of (5.5) is

Ψ(ξj , ·) = Ψ(·, ξj) = 0. (6.3)

The bilinear form

(f, g)Ψ := (f −ΠPf, g −ΠPg)Φ for all f, g ∈ NΦ,P(Ω) (6.4)

is positive semidefinite on the native space NΦ,P(Ω) for Φ. Its nullspace is P , and
the reproduction property (5.11) takes the simplified form

f(x) = (ΠPf)(x) + (f,Ψ(x, ·))Ψ for all x ∈ Ω, (6.5)

where we used (6.3). The representer fλ of a functional λ ∈ N ∗
Φ,P(Ω) in the sense

of (5.13) takes the simplified form

fλ(x) = λyΨ(x, y), x, y ∈ Ω

and Theorem 5.5 goes over into

Theorem 6.1 Each functional λ in the dual N ∗
Φ,P(Ω) of the native space NΦ,P(Ω)

of a conditionally positive definite function Φ on some domain Ω with respect to a
finite–dimensional function space P acts via

λ(f) = (λ ◦ΠP)f + (f, λxΨ(x, ·))Ψ
on all functions f ∈ NΦ,P (Ω).

Note that the reduction is easy to calculate. It coincides with the original
function Φ if the latter is unconditionally positive definite. There also is a connec-
tion to the preconditioning technique of Jetter and Stöckler [7].

Theorem 6.2 The reduction Ψ of Φ with respect to Ξ is (strictly) positive definite
on Ω \ Ξ.

Proof. Let λX,M be a functional with support X = {x1, . . . , xM} ⊆ Ω \ Ξ. Then
the functional λX,M (Id−ΠP) is finitely supported on Ω and vanishes on P . Thus
we can use the conditional positive definiteness of Φ and get from (6.2) that

λx
X,Mλy

X,MΨ(x, y) = (λX,M (Id−ΠP))
x(λX,M (Id−ΠP))

yΦ(x, y)

is nonnegative and vanishes only if λX,M (Id−ΠP ) is the zero functional in LP(Ω).
Its representation is

λX,M (Id−ΠP)(f) =

M
∑

j=1

λj

(

f(xj)−
q
∑

k=1

pk(xj)f(ξk)

)

=

M
∑

j=1

λjf(xj)−
q
∑

k=1

f(ξk)

M
∑

j=1

λjpk(xj),
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and since the sets X = {x1, . . . , xM} and Ξ are disjoint, the coefficients must
vanish.

There is an easy possibility used in [9] to go over from here to a fully positive
definite case. Using an early idea from Golomb and Weinberger [4] we form a new
kernel function K : Ω× Ω → IR by

K(x, y) := Ψ(x, y) +

q
∑

j=1

pj(x)pj(y) (6.6)

and a new inner product

(f, g)Φ :=

q
∑

j=1

f(ξj)g(ξj) + (f −ΠPf, g −ΠPg)Φ (6.7)

on the whole native space NΦ,P (Ω).

Theorem 6.3 Under the new inner product (6.7) the native space NΦ,P(Ω) for a
CPD function Φ on Ω is a Hilbert space with reproducing kernel defined by (6.6).
In other words NΦ,P (Ω) = NK(Ω) as vector spaces but with different though very
similar topologies.

Proof. It suffices to prove the reproduction property for some f ∈ NΦ,P(Ω) at
some x ∈ Ω via

(f,K(x, ·))Φ =

q
∑

j=1

f(ξj)pj(x) + (f −ΠPf,Ψ(x, ·))Φ

= (ΠPf)(x) + (f −ΠPf)(x)

= f(x).

Theorem 6.3 is the reason why we do not consider the CPD case to be more
complicated than the SPD case. We call K the regularized kernel with respect
to the original CPD function Φ.

7 Numerical treatment of modified kernels

Here, we want to describe the numerical implications induced by reduction or
regularization of a kernel Φ. Consider first the standard setting of interpolation of
point–evaluation data s|X ∈ IRM in some set X = {x1, . . . , xM} ⊂ Ω by a CPD
function Φ, where we additionally assume that point–evaluation of Φ is possible.
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A generalization to Hermite–Birkhoff data will be given in section 10 below. The
interpolant takes the form

s = pX +RΦ,Ω(λX,M ), pX ∈ P , λX,M ∈ LP(Ω) (7.1)

and this gives the linear system

(

AΦ,X PX

PT
X 0

)(

λ
ρ

)

=

(

s|X
0

)

, (7.2)

where PX contains the values pj(xk), 1 ≤ j ≤ q, 1 ≤ k ≤ M for some arbitrary

basis p1, . . . , pq of P . The set X = {x1, . . . , xM} must be P–unisolvent to make
the system nonsingular, and thus we can assume Ξ ⊂ X and number the points of
X such that xj = ξj , 1 ≤ j ≤ q = dimP . This induces a splitting





A11 A12 P1

AT
12 A22 P2

PT
1 PT

2 0









λ1

λ2

ρ



 =





s|Ξ
s|X\Ξ

0





with q× q matrices A11 and P1 and an (M − q)× (M − q) matrix A22. Passing to
a Lagrange basis on Ξ then means setting σ = P1ρ and





A11 A12 I
AT

12 A22 P2P
−1
1

I (P−1
1 )TPT

2 0





(

λ1λ2

σ

)

=





s|Ξ
s|X\Ξ

0



 . (7.3)

Now we take a closer look at the formula (6.2) and relate it to the above matrices.
Denoting the identity matrix by I, we get the result

AΨ,X =

(

A11 A12

AT
12 A22

)

−
(

I
P2P

−1
1

)

(A11, A12)

−
(

A11

AT
12

)

(

I, (P−1
1 )TPT

2

)

+

(

I
P2P

−1
1

)

A11

(

I, (P−1
1 )TPT

2

)

and see that everything except the lower right (M − q)× (M − q) block vanishes.
Setting Y := X \ Ξ we thus have proven

AΨ,Y = A22 − P2P
−1
1 A12 −AT

12(P
−1
1 )TPT

2 + P2P
−1
1 A11(P

−1
1 )TPT

2

and this matrix is symmetric and positive definite due to Theorem 6.2. If we
eliminate λ1 and σ in the system (7.3) by

λ1 = −(P−1
1 )TPT

2 λ2

σ = s|Ξ −A11λ1 −A12λ2

= s|Ξ +
(

A11(P
−1
1 )TPT

2 −A12

)

λ2

(7.4)
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we arrive at the system

AΨ,Y λ2 = s|Y − P2P
−1
1 s|Ξ = s|Y − p|Y (7.5)

if p is calculated beforehand from the values of s on Ξ. The algebraic reduction
to the above system and the transition to the case of Theorem 6.3 take at most
O(qM2) operations and thus are worth while when compared to the complexity of
a direct solution. Note that the transformations may spoil sparsity properties of the
original matrix AΦ,X , but they are unnecessary anyway, if compactly supported

functions on IRd are used, because these are SPD, not CPD.
Finally, let us look at the numerical effect of a regularized kernel as in (6.6).

Since we used a Lagrange basis of P there, and since we have a special numbering,
we get

AK,X =

(

I PT
Y

PY AK,Y

)

with PY = P2P
−1
1 and AK,Y = AΨ,Y + PY P

T
Y , AK,Ξ = AΨ,Ξ + I = I.

Note that the representation (7.1) is different from (5.11). In particular, if
two interpolants sY , sX based on different sets Y ⊇ X ⊇ Ξ coincide on X , then
necessarily ΠsY = ΠsY , but not pX = pY .

8 Properties of Native Spaces

Due to the pioneering work of Madych and Nelson [11], the native space can be
written in another form. It is the largest space on which all functionals from LP(Ω)
(and its closure LΦ,P(Ω)) act continuously:

Theorem 8.1 The space

MΦ,P(Ω) := {f : Ω → IR : |λ(f)| ≤ Cf‖λ‖Φ for all λ ∈ LP(Ω)}

coincides with the native space NΦ,P (Ω). It has a seminorm

|f |M := sup {|λ(f)| : λ ∈ LP(Ω), ‖λ‖Φ ≤ 1} (8.1)

which coincides with |f |Ψ defined via (6.4).

Proof. For all functions f = pf + RΦ,Ω(λf ) ∈ NΦ,P(Ω) with λf ∈ LΦ,P(Ω)
and pf ∈ P we can use (5.10) to prove that f lies in the space MΦ,P(Ω) with
Cf ≤ ‖λf‖Φ. To prove the converse, consider an arbitrary function f in MΦ,P(Ω)
and define a functional Ff ∈ LP(Ω)

∗ by Ff (λ) := λ(f). The definition ofMΦ,P(Ω)
makes sure that Ff is continuous on LP(Ω), and thus Ff can be continuously
extended to LΦ,P (Ω). By the Riesz representation theorem, there is some λf ∈
LΦ,P(Ω) such that

Ff (µ) = (µ, λf )Φ for all µ ∈ LΦ,P (Ω).
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Then we can define the function f − RΦ,Ω(λf ) and apply arbitrary functionals
µ ∈ LP(Ω) to get

µ(f −RΦ,Ω(λf )) = µ(f)− µ(RΦ,Ω(λf )) = µ(f)− (µ, λf )Φ = µ(f)− Ff (µ) = 0.

Specializing to µ = δ(x) for all x ∈ Ω we see that f − RΦ,Ω(λf ) coincides on Ω
with a function pf from P . Thus f = pf + RΦ,Ω(λf ) is a function in the native
space NΦ,P (Ω). This proves that the two spaces coincide as spaces of real–valued
functions on Ω.

To prove the equivalence of norms, we use the above notation and first obtain
|f |M ≤ ‖λf‖Φ from (8.1). But since we can replace LP(Ω) by its closure LΦ,P(Ω)
in (8.1) and then use λf as a test functional, we also get

|f |M ≥ |λf (f)|/‖λf‖Φ = ‖λf‖Φ.

Due to |f |Ψ = ‖λf‖Φ this proves the assertion.

We now want to give a sufficient criterion due to Mark Klein [8] for differ-
entiability of functions in the native space NΦ,P(Ω) of a CPD function Φ with

respect to some space P on Ω ⊆ IRd. Since this is a disguised statement about
functionals in the dual space LΦ,P(Ω), we first look at functionals:

Theorem 8.2 Let an arbitrary functional λ be defined for functions on Ω and
have the properties

1. The real number λxλyΦ(x, y) is well–defined and

2. obtainable as the “double” limit of values λx
nλ

y
mΦ(x, y) for a sequence {λk}k

of finitely supported linear functionals λk from LP(Ω).

3. For any finitely supported linear functional ρ ∈ LP(Ω) the value ρxλyΦ(x, y)
exists and is the limit of the values ρxλy

nΦ(x, y) for n → ∞.

Then the functional λ has an extension µ in the space LΦ,P(Ω) such that all
appearances of λ in the above properties can be replaced by µ. All functionals in
LΦ,P(Ω) can be obtained this way.

Proof. The second property means that for any ǫ > 0 there is some N ∈ IN such
that

|λxλyΦ(x, y)− λx
nλ

y
mΦ(x, y)| < ǫ

for n,m ≥ N . Then for c := λxλyΦ(x, y) we get

‖λn − λm‖2Φ = ‖λn‖2Φ + ‖λm‖2Φ − 2(λn, λm)Φ

≤
∣

∣‖λn‖2Φ − c
∣

∣+
∣

∣‖λn‖2Φ − c
∣

∣+ 2 |(λn, λm)Φ − c|

< 4ǫ,
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proving that {λk}k is a Cauchy sequence. It has a limit µ ∈ LΦ,P (Ω), and by
continuity we have c = (µ, µ)Φ. For any finitely supported functional ρ ∈ LP(Ω)
we get

ρxλyΦ(x, y) = lim ρxλy
nΦ(x, y) = lim(ρ, λn)Φ = (ρ, µ)Φ.

Thus the action of λ on a function RΦ,Ω(ρ) coincides with the action of µ. The
final statement concerning necessity of the conditions is a simple consequence of
the construction of LΦ,P (Ω).

The advantage of this result is that it does only involve limits of real num-
bers and values of finitely supported functionals (except for λ itself). A typical
application is

Corollary 8.3 Let Ω1 ⊆ Ω ⊆ IRd be an open domain, and let derivatives of the
form (Dα)x (Dα)yΦ(x, y) exist and be continuous on Ω1×Ω1 for a fixed multiindex
α ∈ INd. Furthermore, assume P = IPd

m for m < |α| such that Dα(P) = {0}. Then
all functions f in the native space FΦ,P(Ω) have a continuous derivative Dαf on
Ω1.

Proof. Any pointwise multivariate derivative of order α at an interior point x
can be approximated by finitely and locally supported functionals which vanish
on P = IPd

m if m < |α|. Thus there is a functional δαx ∈ LΦ,P (Ω) which acts like
this derivative on the functions in the space RΦ,Ω(LP(Ω)). Its action on general
functions RΦ,Ω(ρ) ∈ FΦ,P(Ω) with ρ ∈ LΦ,P(Ω) is also obtainable as the limit of
the action of these functionals. This proves that the pointwise derivative exists for
all functions in the native space.

To prove continuity of the derivative, we first evaluate

‖δαx − δαy ‖2Φ = ‖δαx‖2Φ + ‖δαy ‖2Φ − 2(δαx , δ
α
y )Φ

= (Dα)u|x(D
α)v|xΦ(u, v) + (Dα)u|y (D

α)v|yΦ(u, v)

−2(Dα)u|x(D
α)v|yΦ(u, v)

and see that the right–hand side is a continuous function. Then

|(Dαf)(x)− (Dαf)(y)|2 = (δαx − δαy , R
−1
Φ,Ωf)

2
Φ ≤ ‖δαx − δαy ‖2Φ‖f‖2Φ

proves continuity of the derivative of functions f in the native space.

Lower order derivatives and more general functionals λ can be treated simi-
larly, applying Theorem 8.2 to approximations of λ− λ ◦ΠP .
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9 Extension and Restriction

We now study the dependence of the native space NΦ,P (Ω) on the domain. To this
end, we keep the function Φ and its corresponding domain Ω fixed while looking
at subdomains Ω1 ⊆ Ω. In short,

Theorem 9.1 Each function from a native space for a smaller domain Ω1 con-
tained in Ω has a canonical extension to Ω with the same seminorm, and the
restriction of each function in NΦ,P(Ω) to Ω1 lies in NΦ,P(Ω1) and has a possibly
smaller norm there.

To prove the above theorem, we have to be somewhat more precise. Consider
a subset Ω1 with

Ξ ⊆ Ω1 ⊆ Ω ⊆ IRd

and first extend the functionals with finite support in Ω1 trivially to functionals
on Ω. This defines a linear map

ǫΩ1
: LP(Ω1) → LP(Ω)

which is an isometry because the inner products are based on (5.2) in both spaces.
The map extends continuously to the respective closures, and we can use the Riesz
maps to define an isometric extension map

eΩ1
: FΦ,P(Ω1) → FΦ,P(Ω), eΩ1

:= RΦ,Ω ◦ ǫΩ1
◦RΦ,Ω1

−1

between the nontrivial parts of the native spacesNΦ,P(Ω1) andNΦ,P(Ω). The main
reason behind this very general construction of canonical extensions of functions
from “local” native spaces is that the variable x in (5.7) can vary in all of Ω
while the support X = {x1, . . . , xM} of the functional λX,M is contained in Ω1.
Of course, we define eΩ1

on P by straightforward extension of functions in P , and
thus have eΩ1

well–defined on all of NΦ,P(Ω).
At this point we want to mark a significant difference to the standard tech-

nique of defining local Sobolev spaces. On Ω = IRd one can prove that the global
Sobolev space W k

2 (IR
d) for k > d/2 is the native space for the radial positive

definite function

Φ(x, y) = φ(‖x− y‖2), φ(r) = rk−d/2Kr−d/2(r)

with a Bessel or Macdonald function. If we go over to localized versions of the
native space, we can do this for very general (even finite) subsets Ω1 of Ω = IRd,
and there are no boundary effects. Furthermore, any locally defined function has
a canonical extension. This is in sharp contrast to the classical construction of
local Sobolev spaces, introducing functions with singularities if the boundary has
incoming edges. These functions have no extension to a Sobolev space on a larger
domain. Functions from local Sobolev spaces only have extensions if the domain
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satisfies certain boundary conditions. Our definition always starts with the global
function Φ and then does a local construction. Is our construction really “local”?
To gain some more insight into this question, we have to look at the restrictions
of functions from global native spaces.

Curiously enough, the restriction of functions from NΦ,P(Ω) to Ω1 is slightly
more difficult to handle than the extension. If we define rΩ1

(f) := f|Ω1
for f ∈

NΦ,P(Ω), we have to show that the result is a function in NΦ,P(Ω1).

Lemma 9.2 The restriction map

rΩ1
: NΦ,P(Ω) → NΦ,P(Ω1)

is well–defined and coincides with the formal adjoint of eΩ1
. For any function f

in NΦ,P (Ω) the “localized” seminorm |rΩ1
f |Ψ,Ω1

depends only on the values of f
on Ω1. It is a monotonic function of Ω1.

Proof. From the extension property of ǫΩ1
and the restriction property of rΩ1

we
can conclude

(ǫΩ1
λΩ1

)(f) = λΩ1
(rΩ1

f) for all λΩ1
∈ LΦ,P(Ω1), f ∈ NΦ,P(Ω). (9.1)

This is obvious for finitely supported functionals from LP(Ω1) and holds in general
by continuous extension.

We use this to prove that rΩ1
(f) := f|Ω1

lies in MΦ,P(Ω1) for each f in
MΦ,P(Ω). This follows from

|λΩ1
(rΩ1

f)| = |(ǫΩ1
λΩ1

)f | ≤ |f |Ψ,Ω‖ǫΩ1
λΩ1

‖Φ,Ω = |f |Ψ,Ω‖λΩ1
‖Φ,Ω1

for all λΩ1
∈ LΦ,P(Ω1) and all f ∈ FΦ,P(Ω). This also proves the inequality

|rΩ1
f |Ψ,Ω1

≤ |f |Ψ,Ω. Both inequalities are trivially satisfied for f ∈ P . The mono-
tonicity statement can be obtained by the same argument as above. Thus the
norm of the restriction map is not exceeding one. Our detour via MΦ,P(Ω1) im-
plies that |rΩ1

f |Ψ,Ω1
only depends on the values of f on Ω1. For all f ∈ FΦ,P(Ω)

and fΩ1
∈ FΦ,P(Ω1) equation (9.1) yields

(eΩ1
fΩ1

, f)Φ,Ω = (RΦ,ΩǫΩ1
RΦ,Ω1

−1fΩ1
, f)Φ,Ω

= (ǫΩ1
RΦ,Ω1

−1fΩ1
)(f)

= (RΦ,Ω1

−1fΩ1
)(rΩ1

f)

= (fΩ1
, rΩ1

f)Φ,Ω1
.

(9.2)

This is the nontrivial part of the proof that that rΩ1
is the formal adjoint of eΩ1

.
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Lemma 9.3 The above extension and restriction maps satisfy

rΩ1
◦ eΩ1

= IdNΦ,P (Ω1).

Proof. The assertion is true on P . On FΦ,P(Ω1) we use (9.2) and the fact
that eΩ1

is an isometry. Then for all fΩ1
, gΩ1

∈ FΦ,P(Ω1) we have

(fΩ1
, gΩ1

)Φ,Ω1
= (eΩ1

fΩ1
, eΩ1

gΩ1
)Φ,Ω

= (fΩ1
, rΩ1

eΩ1
gΩ1

)Φ,Ω1

Thus gΩ1
− rΩ1

eΩ1
gΩ1

must be zero, because it is in FΦ,P(Ω1).

An interesting case of Lemma 9.2 occurs when Ω1 = X = {x1, . . . , xM} is
finite and contains Ξ. Then the functions in NΦ,P(Ω1) are of the form

s = p+RΦ,Ω1
(λX,M ), p ∈ P , λX,M ∈ LP(Ω1)

and their seminorm is explicitly given by

|s|Ψ,Ω1
= ‖λX,M‖Φ.

Due to Lemma 9.2 this value depends only on the values of s on Ω1 = X =
{x1, . . . , xM}, and we can read off from (7.2) how this works. The value of the
norm is numerically accessible. See [14] for the special case of thin–plate splines.

If we look at the extension eΩ1
s of s to all of Ω we see that it has the same

data on X . From

eΩ1
(s−ΠPs) = RΦ,ΩǫΩ1

RΦ,Ω1

−1(s−ΠPs)

RΦ,Ω
−1eΩ1

(s−ΠPs) = ǫΩ1
RΦ,Ω1

−1(s−ΠPs)

one can read off that this functional has support in X = Ω1 and thus is the global
form of the interpolant.

This holds also for general transfinite interpolation processes. Consider an
arbitrary subset Ω1 of Ω with Ξ ⊆ Ω1. On such a set, data are admissible if they
are obtained from some function f ∈ NΦ,P (Ω). Then eΩ1

rΩ1
f has the same data

on Ω1. Furthermore, we assert that it is the global function with least seminorm
with these data. By standard arguments this boils down to proving the variational
equation

(eΩ1
rΩ1

f, v)Ψ,Ω = 0 for all v ∈ NΦ,P(Ω) with rΩ1
v = 0.

But this is trivial for f ∈ P and follows from

(eΩ1
rΩ1

f, v)Ψ,Ω = (RΦ,ΩǫΩ1
RΦ,Ω1

−1rΩ1
f, v)Ψ,Ω

= (ǫΩ1
RΦ,Ω1

−1rΩ1
f)(v)

= (RΦ,Ω1

−1rΩ1
f)(rΩ1

v)
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for all f ∈ FΦ,P(Ω). Now we can generalize a result that plays an important part
in Duchon’s [1] error analysis of polyharmonic splines:

Theorem 9.4 For all functions f ∈ NΦ,P(Ω) and all subsets Ω1 of Ω with Ξ ⊆
Ω1 ⊆ Ω the function eΩ1

rΩ1
f ∈ NΦ,P(Ω) has minimal seminorm in NΦ,P(Ω) under

all functions coinciding with f on Ω1.

Theorem 9.5 The orthogonal complement of eΩ1
(NΦ,P (Ω1)) in NΦ,P(Ω) is the

space of all functions that agree on Ω1 with a function in P.

Proof. Use the above display again, but for v ∈ NΦ,P (Ω) being orthogonal to all
functions g = rΩ1

f .

10 Linear recovery processes

For applications of native space techniques, we want to look at general methods for
reconstructing functions in the native spaceNΦ,P(Ω) from given data. The data are
furnished by linear functionals λ1, . . . , λN from N ∗

Φ,P(Ω), and the reconstruction
uses functions v1, . . . , vN from NΦ,P(Ω). At this point, we do not assume any link
between the functionals λj and the functions vj . A function f ∈ NΦ,P(Ω) is to be
reconstructed via a linear quasi–interpolant

sf (x) :=
N
∑

j=1

λj(f)vj(x), x ∈ Ω, f ∈ NΦ,P(Ω)

which should reproduce functions from P by

p(x) = sp(x) =

N
∑

j=1

λj(p)vj(x), x ∈ Ω, p ∈ P . (10.1)

Then the error functional

ǫx : f 7→ f(x)− sf (x), ǫx = δx −
N
∑

j=1

vj(x)λj(f)

is in LΦ,P (Ω) for all x ∈ Ω and is continuous on FΦ,P(Ω). This setting covers a
wide range of Hermite–Birkhoff interpolation or quasi–interpolation processes.

Theorem 10.1 With the power function defined by

P (x) := ‖ǫx‖Φ
the error is bounded by

|f(x)− sf (x)| = |ǫx(f)| ≤ P (x)|f |Ψ for all f ∈ NΦ,P(Ω), x ∈ Ω.
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Proof. Just use (10.1) and evaluate

|f(x)− sf (x)| = |ǫx(f)| = |ǫx(f −ΠPf)|

≤ ‖ǫx‖Φ‖f −ΠPf‖Φ = P (x)|f |Ψ.

Theorem 10.2 The power function can be explicitly evaluated by

P 2(x) := ‖ǫx‖2Φ

= Ψ(x, x)− 2

N
∑

j=1

vj(x)λ
y
jΨ(y, x)

+

N
∑

j=1

N
∑

k=1

vj(x)vk(x)λ
y
j λ

z
kΨ(y, z).

(10.2)

Proof. Use

ǫx(f) =



δ(x) −
N
∑

j=1

vj(x)λj



 (f −ΠPf)

for all f ∈ NΦ,P (Ω) and evaluate ‖ǫx‖2Ψ = ‖ǫx‖2Φ = P 2(x).

Note that it is in general not feasible to evaluate λxΦ(x, ·) for functionals
λ ∈ N ∗

Φ,P(Ω) unless they are plain point evaluations or vanish on P . This is why
we make a detour via Ψ here and use a different representation of ǫx. But in many
standard cases one can replace Ψ in (10.2) by Φ.

Altogether, each linear recovery process has a specific power function that
describes the pointwise worst–case error for recovery of functions from the native
space. The power function can be explicitly evaluated, and it would be interesting
to see various examples. Now we add more information on the relation between
the functionals λj and the functions vj :

Theorem 10.3 If the recovery process is interpolatory, i.e.

λj(vk) = δjk, 1 ≤ j, k ≤ N, (10.3)

the error is bounded by

|f(x)− sf (x)| = |ǫx(f)| ≤ P (x)|f − sf |Ψ for all f ∈ NΦ,P(Ω), x ∈ Ω.

Furthermore, we have

λj(P ) := λx
j λ

y
j (ǫx, ǫy)Ψ = 0, 1 ≤ j ≤ N. (10.4)
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Proof. The interpolation property implies sf−sf = 0, and then Theorem 10.1 can
be applied to the difference f − sf . This proves the error bound, and the second
assertion follows directly from (10.3) when applied to (10.2) written out in two
variables as required for (10.4).

Note that the special definition (10.4) for evaluation of λj(P ) is necessary
because P is in general not in the native space. The new kernel function Q(x, y) :=
(ǫx, ǫy)Ψ has a form similar to the reduction of Φ. It has interesting additional
properties and can in particular be used for recursive construction of interpolants
and orthogonal bases. See [15] for details and [14] for a special case.

11 Optimal recovery

We now want to let the functions vj vary freely, but we keep the functionals λj

and the evaluation point x ∈ Ω fixed. Since the vj(x) influence only the power
function part of the error bound, we can try to minimize the quadratic form
(10.2) with respect to the N real numbers vj(x), 1 ≤ j ≤ N under the linear
constraints imposed by (10.1). We do this by application of standard techniques of
optimization. Picking a basis p1, . . . , pq of P and introducing Lagrange multipliers
qm(x), 1 ≤ m ≤ q for the q linear constraints from (10.1), we get that any critical
point of the constrained quadratic form is a critical point of the unconstrained
quadratic form

Ψ(x, x)− 2

N
∑

j=1

vj(x)λ
y
jΨ(y, x)

+

N
∑

j=1

N
∑

k=1

vj(x)vk(x)λ
y
jλ

z
kΨ(y, z)

− 2

q
∑

m=1

qm(x)

(

pm(x)−
N
∑

k=1

vk(x)λk(pm)

)

to be minimized with respect to the values vj(x). The equations for a critical point
of the constrained quadratic form thus are

λy
kΨ(x, y) =

N
∑

j=1

λy
jλ

z
kΨ(y, z)v∗j (x) +

q
∑

m=1

q∗m(x)λk(pm)

pm(x) =

N
∑

j=1

λj(pm)v∗j (x), 1 ≤ k ≤ N, 1 ≤ m ≤ q.

(11.1)
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We want to prove that this system has a unique solution. Taking a solution of the
homogeneous system

0 =

N
∑

j=1

λy
jλ

z
kΨ(y, z)aj +

q
∑

m=1

bmλk(pm)

0 =

N
∑

j=1

λj(pm)aj , 1 ≤ k ≤ N, 1 ≤ m ≤ q,

we see that the functional

χ :=

N
∑

j=1

ajλj

vanishes on P and thus is in LΦ,P(Ω). Applying it to the first N equations of
(11.1) yields

0 =

N
∑

j=1

N
∑

k=1

λy
jλ

z
kΨ(y, z)ajak +

q
∑

m=1

bm

N
∑

k=1

λk(pm)ak

=

N
∑

j=1

N
∑

k=1

λy
jλ

z
kΨ(y, z)ajak + 0

= χyχzΨ(y, z)

= χyχzΦ(y, z).

Since Φ is a CPD function, we conclude that the functional χ must vanish on the
native space. If we make the reasonable additional assumption that the functionals
λj are linearly independent, we see that the coefficients aj must vanish. This leaves
us with the system

0 =

q
∑

m=1

bmλk(pm), 1 ≤ k ≤ N,

and we can conclude that all the coefficients bm are zero, if we assume that there
is no nonzero function p in P for which all data λk(p), 1 ≤ k ≤ N vanish.

Now we know that (11.1) has a unique solution v∗j (x), q∗m(x) for indices
1 ≤ j ≤ N, 1 ≤ m ≤ q = dimP . Thus the augmented unconstrained quadratic
form has a unique critical point, and the same holds for the constrained quadratic
form. Since the latter is nonnegative and positive definite, the critical point must
be a minimum. Furthermore, we see that the optimal solution values v∗j (x), q

∗
m(x)

are linear combinations of the right–hand values pm(x), 1 ≤ m ≤ q and λy
kΨ(x, y)

for 1 ≤ k ≤ N . If we apply the functional λj to the system, we see that the j–th
column coincides with the right–hand side, and this proves that the solution must
satisfy the interpolation property (10.3). Furthermore, we get λj(qm) = 0 for all
indices 1 ≤ j ≤ N, 1 ≤ m ≤ q.
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But note that our solution is not just any interpolatory set of functions
matching the data functionals. It is uniquely determined by the λj , and it is
composed of functions λy

jΨ(y, ·) acting as the Riesz representers of the λj in the
sense of Theorem (6.1) plus functions from P . We summarize:

Theorem 11.1 Assume that there is no nonzero function from P on which all
functionals λj vanish, and that the λj are linearly independent. Then the power
function at any point x ∈ Ω can be minimized among all other power functions
using the same functionals λj, but possibly different functions vj. The minimum is
attained for a specific set v∗j of functions that satisfy the interpolation conditions
(10.3) and are linear combinations of functions from P and generalized represen-
ters of the functionals λj .

We add an intrinsic characterization of the optimal power function:

Theorem 11.2 Under the above assumptions, the optimal power function P ∗(x)
describes the maximal value that any function f ∈ NΦ,P(Ω) can attain at x ∈ Ω if
it satisfies the restrictions λj(f) = 0, 1 ≤ j ≤ N and |f |Ψ ≤ 1.

Proof. For any such function, Theorem 10.3 implies |f(x)| ≤ P ∗(x) because of
sf = 0. For fixed x ∈ Ω, the maximal value is attained for the special function

fx = Ψ(·, x)−
N
∑

j=1

v∗j (x)λ
y
jΨ(y, ·)−

q
∑

m=1

q∗m(x)pm(·)

after rescaling. This is due to

fx(x) = (P ∗(x))2 = |fx|2Ψ
which needs some elementary calculations and the identity

N
∑

k=1

v∗k(x)λ
y
kΨ(x, y) =

N
∑

j=1

N
∑

k=1

v∗j (x)v
∗
k(x)λ

y
jλ

z
kΨ(y, z) +

q
∑

m=1

q∗m(x)pm(x)

following from (11.1).

Under the assumptions of Theorem 11.1 one can try to rewrite the recovery
function as

s∗f(x) =

N
∑

j=1

λy
jΨ(y, x)aj +

q
∑

m=1

pm(x)bm, (11.2)

where the coefficients aj satisfy

N
∑

j=1

λj(pm)aj = 0, 1 ≤ m ≤ q = dimP



26 R. Schaback

in order to form a functional from LP(Ω). The equations for a generalized inter-
polation of a function f then are

λk(f) = λk(s
∗
f ) =

N
∑

j=1

λy
jλ

z
kΨ(y, z)aj +

q
∑

m=1

λk(pm)bm

0 =

N
∑

j=1

λj(pm)aj , 1 ≤ k ≤ N, 1 ≤ m ≤ q,

(11.3)

and the coefficient matrix coincides with the matrix in (11.1). There is much
similarity to (7.2), but we are more careful here and put Ψ instead of Φ into the
definition (11.2) of the recovery function, because λy

jΦ(y, ·) may not make sense
while δyxj

Φ(y, ·) in (7.1) always is feasible.
If we take the Ψ–inner product of s∗f with an arbitrary function g from the

native space, we get

(s∗f , g)Ψ =

N
∑

j=1

aj
(

λy
jΨ(y, ·), g

)

Ψ
+ 0

=

N
∑

j=1

ajλ
y
j (g(y)− (ΠPg)(y))

=

N
∑

j=1

ajλj(g).

By a standard variational argument this implies an extension of Theorem 9.4 to
more general data functionals:

Theorem 11.3 Under the hypotheses of Theorem 11.1 the function s∗f solves the
minimization problem

min {|g|Ψ : g ∈ NΦ,P(Ω), λj(f − g) = 0, 1 ≤ j ≤ N} .
Furthermore, the orthogonality relation

(f − s∗f , sf )Ψ = 0

holds and implies
|f |2Ψ = |f − s∗f |2Ψ + |s∗f |2Ψ.

From section 9 we already know that the second term on the right–hand side
can be calculated explicitly. The minimization principle of Theorem 11.3 implies
that this value increases when more and more data functionals are used to recover
the same function f . In case of reconstruction of a function from the native space,
there is the upper bound |f |2Ψ for these values, but for general given functions
there might be no upper bound. However, the following related characterization
of native spaces was proven in [16]:
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Theorem 11.4 The native space for a continuous CPD function Φ on Ω can be
characterized as the set of all real–valued functions f on Ω for which there is a fixed
upper bound Cf ≥ |s∗f |Ψ for all interpolants s∗f based on arbitrary point–evaluation
data λj = δxj

, xj ∈ Ω.

12 Connection to L2 spaces: Overview

This section starts an analysis of native spaces directed towards the well–known
representation of the “energy inner product” of classical splines in the form

(f, g)Φ = (Lf, Lg)L2(Ω) =: (Lf, Lg) (12.1)

with some linear differential operator L. Natural univariate splines of odd degree
2n−1 are related to L = dm/dxm on Ω = [a, b] ⊂ IR. Furthermore, the fundamental
work of Duchon on thin–plate and polyharmonic splines is based strongly on the
use of L = ∆m. For general (not necessarily radial) basis functions, there is no
obvious analogue of such an operator. However, we want to take advantage of
(12.1) and thus proceed to work our way towards a proper definition of L.

Since the procedure is somewhat complicated, we give an overview here, and
point out the reasons for certain arguments that may look like unnecessary detours.
We first have to relate the native space somehow to L2(Ω). To achieve this, we
simply imbed the major part FΦ,P(Ω) of the native space NΦ,P(Ω) = FΦ,P(Ω)+P
into L2(Ω). Then we study the adjoint C of the embedding, which turns out to
be a convolution–type integral operator with kernel Φ that finally will be equal to
(L∗L)−1. We thus have to form the “square root” of the operator C and invert
it to get L. Taking the square root requires nonnegativity of C in the sense of
integral operators. This is a property that is intimately related to (strict) positive
definiteness of the kernel Φ, and thus in section 16 we take a closer look at the
relation of these two notions. In between, section 15 will provide a first application
of the technique we develop here. In the notation we use (·, ·) to denote the inner
product in L2(Ω).

13 Embedding into L2

There is an easy way to imbed a native space into an L2 space.

Lemma 13.1 Let Φ be SPD on Ω, and let Ψ be the normalized kernel with respect
to Φ as defined in section 6. Assume

C2
2 :=

∫

Ω

Ψ(x, x)dx < ∞. (13.1)

Then the Hilbert space FΦ,P(Ω) ⊆ NΦ,P(Ω) for Φ has a continuous linear embed-
ding into L2(Ω) with norm at most C2.
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Proof: Conditional positive definiteness clearly implies that the integrand Ψ(x, x) =
(δ(x), δ(x))Φ = ‖δ(x)‖2Φ is positive when forming (13.1).

Now for all f ∈ FΦ,P(Ω) and all x ∈ Ω we can use the reproduction property
(5.11) to get

f(x)2 = (f,Ψ(x, ·))2Φ
≤ ‖f‖2Φ‖Ψ(x, ·)‖2Φ
= ‖f‖2ΦΨ(x, x),

where we used ΠPf = 0 for the functions f ∈ FΦ,P(Ω). Then the assertion follows
by integration over Ω.

By the way, the above inequality shows in general how upper bounds for
functions in the native space can be derived from the behaviour of Ψ on the
diagonal of Ω× Ω.

14 The convolution mapping from L2 into FΦ,P(Ω)

We now go the other way round and map L2(Ω) into the native space.

Theorem 14.1 Assume (13.1) to hold for a CPD function Φ on Ω. Then the
integral operator

C(v)(x) :=

∫

Ω

v(t)Ψ(x, t)dt (14.1)

of generalized convolution type maps L2(Ω) continuously into the Hilbert space
FΦ,P(Ω) ⊆ NΦ,P(Ω). It has norm at most C2 and satisfies

(f, v) = (f, C(v))Φ for all f ∈ FΦ,P(Ω), v ∈ L2(Ω), (14.2)

i.e. it is the adjoint of the embedding of the Hilbert subspace FΦ,P(Ω) of the native
space NΦ,P (Ω) into L2(Ω).

Proof: We use the definition of MΦ,P(Ω) in Theorem 8.1 and pick some
finitely supported functional λ ∈ LP(Ω) to get

λ(C(v)) =

∫

Ω

v(t)λxΨ(x, t)dt

≤ ‖v‖‖λxΨ(x, ·)‖
≤ C2‖v‖‖λ‖Φ

for all v ∈ L2(Ω). In case of f(t) := Ψ(x, t) with arbitrary x ∈ Ω, equation (14.2)
follows from the definition of the operator C and from the reproduction property.
The general case is obtained by continuous extension.

Of course, equation (14.2) generalizes to

(f −ΠPf, v) = (f −ΠPf, C(v))Φ = (f, C(v))Ψ for all f ∈ NΦ,P (Ω), v ∈ L2(Ω)
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on the whole native space NΦ,P (Ω).
We add two observations following from general properties of adjoint map-

pings:

Corollary 14.2 The range of the convolution map C is dense in the Hilbert space
FΦ,P(Ω). The latter is dense in L2(Ω) iff C is injective.

Criteria for injectivity of C or, equivalently, for density of the Hilbert space
FΦ,P(Ω) in L2(Ω) are an open problem (in general). The main obstacle is to
construct sufficiently many test functions in the native space. For classical radial
basis functions on Ω = IRd one can use Fourier transform techniques to prove
existence of tempered or C∞

0 test functions in the native space on IRd. Then one
uses the restriction technique to prove that restrictions of these functions are in
the local native spaces. This is how the problem can be attacked from the global
situation.

We finally remark that the above problem is related to the specific way of
defining an SPD or CPD function via finitely supported functionals. Section 16
will shed some light on another feasible definition.

15 Improved convergence results

The space C(L2(Ω)) allows an improvement of the standard error estimates for
reconstruction processes of functions from native spaces. Roughly speaking, the
error bound can be “squared”.

Theorem 15.1 labelTEBthree If an interpolatory recovery process in the sense of
Theorem 11.1 is given, then there is a bound

|f(x)− s∗f (x)| ≤ P ∗(x)‖P ∗‖‖v‖
for all f − ΠPf = C(v) ∈ NΦ,P(Ω), x ∈ Ω, v ∈ L2(Ω). Here, we denote the
optimized power function for the special situation in Theorem 11.1 by P ∗.

Proof: Taking the L2 norm of the standard error bound in 10.3, we get

‖f − s∗f‖ ≤ ‖P ∗‖‖f − s∗f‖Ψ.
Now we use (14.2) and the orthogonality relation from Theorem 11.3:

‖f − s∗f‖2Ψ = (f − s∗f , f − s∗f )Ψ
= (f − s∗f , f)Ψ

= (f − s∗f , C(v))Ψ
= (f − s∗f , v)

≤ ‖f − s∗f‖‖v‖
≤ ‖P ∗‖‖f − s∗f‖Φ‖v‖.
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Cancelling ‖f − s∗f‖Φ and inserting the result into the error bound of Theorem
10.3 proves the assertion.

An earlier version of this result, based on Fourier transforms and restricted
to functions on Ω = IRd was given in [19].

16 Positive integral operators

We now look at the operator C from the point of view of integral equations. The
compactness of C as an operator on L2(Ω) will be delayed somewhat, because we
first want to relate our definition of a positive definite function to that of a positive
integral operator. The latter property will be crucial in later sections.

Definition 16.1 An operator C of the form (14.1) is positive (nonnegative),
if the bilinear form

(w,C(v)), v, w ∈ L2(Ω)

is symmetric and positive (nonnegative) definite on L2(Ω).

In our special situation we can write

(w,C(v)) = (C(w), C(v))Φ , v, w ∈ L2(Ω)

and get

Theorem 16.2 If a symmetric and positive semidefinite function Φ on Ω satis-
fies (13.1), then the associated integral operator C is nonnegative. If this holds,
positivity is equivalent to injectivity.

Theorem 16.3 Conversely, if C is a nonnegative integral operator of the form
(13.1) with a symmetric and continuous function Φ : Ω × Ω → IR, then Φ is
positive semidefinite on Ω.

Proof: We simply approximate point evaluation functionals δx by functionals
on L2(Ω) that take a local mean. Similarly, we approximate finitely supported
functionals by linear combinations of the above form. The rest is standard, but
requires continuity of Φ.

Unfortunately, the above results do not allow to conclude positive definiteness
of Φ from positivity of the integral operator C. However, due to the symmetry of
Φ, the integral operator C is always self–adjoint.
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17 Compact nonnegative self–adjoint integral op-

erators

To apply strong results from the theory of integral equations, we still need that C
is compact on L2(Ω). This is implied by the additional condition

∫

Ω

∫

Ω

Φ(x, y)2dxdy < ∞ (17.1)

which is automatically satisfied if our SPD function Φ is continuous and Ω is
compact. Note the difference to (13.1), which is just enough to ensure embedding
of the native space into L2(Ω).

From now on, we assume Φ to be an SPD kernel satisfying (13.1) and (17.1).
Then C is a compact self–adjoint nonnegative integral operator. Now spectral
theory and the theorem of Mercer [18] imply the following facts:

1. There is a finite or countable set of positive real eigenvalues

µ1 ≥ µ2 ≥ . . . > 0 and eigenfunctions ϕ1, ϕ2, . . . ∈ L2(Ω) such that

C(ϕn) = µnϕn, n = 1, 2, . . . .

2. The eigenvalues µn converge to zero for n → ∞, if there are infinitely many.

3. There is an absolutely and uniformly convergent representation

Φ(x, y) =
∑

n

µnϕn(x)ϕn(y), x, y ∈ Ω.

4. The functions ϕn are orthonormal in L2(Ω).

5. Together with an orthonormal basis of the kernel of C, the functions ϕn form
a complete orthonormal system.

6. There is a nonnegative self–adjoint operator ∗
√
C such that C = ∗

√
C ∗
√
C and

with an absolutely and uniformly convergent kernel representation

∗
√
Φ(x, y) :=

∑

n

√
µnϕn(x)ϕn(y), x, y ∈ Ω,

where
∗
√
C(v)(x) :=

∫

Ω

v(t)
∗
√
Φ(x, t)dt, x ∈ Ω, v ∈ L2(Ω).

We use the symbol ∗
√
Φ to denote the “convolution square–root”, because

Φ(x, y) =

∫

Ω

∗
√
Φ(x, t)

∗
√
Φ(t, y)dt
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is a generalized convolution. We remark that this equation can be used for con-
struction of new positive definite functions by convolution, and we hope to find
room for details later.

The situation of finitely many eigenvalues cannot occur for the standard case
of continuous SPD kernels on bounded domains with infinitely many points and
linearly independent point evaluations. Otherwise, the rank of matrices of the form
(Φ(xj , xk))1≤j,k≤N would have a global upper bound.

18 The native space revisited

The action of C on a general function v ∈ L2(Ω) can now be rephrased as

C(v) =
∑

n

µn(v, ϕn)ϕn,

and it is reasonable to define an operator L such that (L∗L)−1 = C formally by

L(v) =
∑

n

(µn)
−1/2(v, ϕn)ϕn. (18.1)

We want to show that this operator nicely maps the native space into L2(Ω),
but for this we have to characterize functions from the native space in terms of
expansions with respect to the functions ϕn.

Theorem 18.1 The native space for an SPD function Φ which generates a non-
negative compact integral operator on L2(Ω) can be characterized as the space of
functions f ∈ L2(Ω) with L2(Ω)–expansions

f =
∑

n

(f, ϕn)ϕn

such that the additional summability condition

∑

n

(f, ϕn)
2

µn
< ∞

holds.

Proof: We first show that on the subspace C(L2(Ω)) of the native space
NΦ,P(Ω) we can rewrite the inner product as

(C(v), C(w))Φ = (v, C(w))

=
∑

n

(v, ϕn)(C(w), ϕn)

=
∑

n

(C(v), ϕn)(C(w), ϕn)

µn
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But this follows from (C(v), ϕn) = µn(v, ϕn) for all v ∈ L2(Ω). Since C(L2(Ω))
is dense in NΦ,P (Ω) due to Corollary 14.2, and since NΦ,P(Ω) is embedded into
L2(Ω), we can rewrite the inner product on the whole native space as

(f, g)Φ =
∑

n

(f, ϕn)(g, ϕn)

µn
for all f, g ∈ NΦ,P(Ω). (18.2)

Corollary 18.2 The functions
√
µnϕn are a complete orthonormal system in the

native space NΦ,P(Ω).

Proof: Orthonormality immediately follows from (18.2), and Theorem 18.1
allows to rewrite all functions from the native space in the form of an orthonormal
expansion

f =
∑

n

(f,
√
µnϕn)Φ

√
µnϕn

with respect to the inner product of the native space.

Corollary 18.3 The operator L defined in (18.1) maps the native space NΦ,P(Ω)
into L2(Ω) such that (12.1) holds. It is an isometry between its domain NΦ,P(Ω)
and its range L2(Ω)/ker C = clos( span {ϕn}n).

Acknowledgements: Special thanks go to Holger Wendland for careful
proofreading and various improvements.
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