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Abstract: This paper constructs unique compactly supported functions in Sobolev
spaces that have minimal norm, maximal support, and maximal central value, un-
der certain renormalizations. They may serve as optimized basis functions in
interpolation or approximation, or as shape functions in meshless methods for
PDE solving. Their norm is useful for proving upper bounds for convergence
rates of interpolation in Sobolev spaces Hé"(]Rd), and this paper gives the correct
rate m —d /2 that arises as convergence like W4/ for interpolation at meshwidth
h — 0 or a blow-up like r~("=4/2) for norms of compactly supported functions
with support radius » — 0. In Hilbert spaces with infinitely smooth reproducing
kernels, like Gaussians or inverse multiquadrics, there are no compactly supported
functions at all, but in spaces with limited smoothness, compactly supported func-
tions exist and can be optimized in the above way. The construction is described
in Hilbert space via projections, and analytically via trace operators. Numerical
examples are provided.
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1 Introduction

In general, a fest function is a smooth compactly supported (CS) function, some-
times assumed to be of infinite smoothness, and often called a bump function.
Such functions are very useful in Analysis at various places, e.g. as mollifiers or
as trial functions.

In reproducing kernel Hilbert spaces like global Sobolev spaces, they also help to
prove certain results, e.g. the optimal rates of approximations of derivatives by
scalable stencils [6]].
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But a closer look at test functions in kernel-based spaces reveals that they may not
even exist in general. Consequently, this paper focuses on test functions in kernel-
based spaces, their existence, their properties, and their applications. While writ-
ing, it emerged that there seems to be no general theory of compactly supported
functions in Sobolev spaces, and this paper tries to fill the gap in that generality.

First, the basics of kernel-based spaces are stated, for fixing notation and the con-
text. Section [3] turns to compactly supported functions, and Section 4 provides a
simple application to the error analysis of interpolation.

Then Section[3] shows that compactly supported functions may simply not exist at
all, if Fourier transforms of kernels decay exponentially. But in cases of algebraic
decay, like for the Matérn kernel generating Sobolev spaces, there exists unique
norm-minimal functions b} with support on the ball B,(0) of radius r around the
origin and value »7(0) = 1. By uniqueness, they are necessarily radial.

Other properties of these functions and their norms are proven in Section[6l When
norms are kept bounded, they have the maximal possible value at zero and the
least possible support radius. Section [7] considers the behaviour of the optimal
norm ||b*|| as a function of r, proving ||b*|| = @(r~"+4/2) for r — 0 in case of
Sobolev space Hé"(Rd ). This works by scaling arguments, and it turns out that
downscaling of optimal functions to a smaller support radius loses optimality, but
still has asymptotically the same rate as above.

Then Section [8] gives a characterization in terms of Hilbert space arguments via
projections, and Section [9] applies standard Sobolev space trace arguments to get
a computable representation. Numerical examples are added in Section 10, while
Section [l 1lsummarizes the results and raises quite a number of issues that require
further investigation.

2 Basics of Spaces and Kernels

Let K be a continuous symmetric positive definite translation-invariant real-valued
kernel on RY x R?. Tt generates a native Hilbert space .# of functions on R? with
inner product (.,.)x and the remarkable properties

K(X,y) = (K(X,'),K(_%'))K forallx,yeRd,

fx) = (f,Kx,))k forallx e RY, f e A,
K(x,y) = (6:,0y). ¢~ for all x, y € R?.
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All delta functionals &, : f ~— f(x) are continuous and have a kernel translate
K(x,-) as their Riesz representer. The space % is the closure of all kernel trans-
lates under the above inner product. The theory of kernel-based spaces is treated
extensively in the books [3} 22, 9] and an earlier lecture note [14]], but we recall
the basic facts for convenience of readers and for fixing notation, as far as needed
in this paper.

In Spatial Statistics, kernels arise as covariance functions of a mean-zero random
field R on R? in the sense that each x € R? carries a zero-mean second-order
random variable R(x) such that K(x,y) = Cov(R(x),R(y)) for all x,y € R,

In Real Analysis, Sobolev spaces Hé”(Rd) for m > d /2 are Hilbert spaces gener-
ated by Whittle-Matérn kernels
—d)2
K(e,y) = =115 Kp gyl —¥1l2)
up to factors, where Ky, is the modified Bessel function of second kind. This case
is very important as well in Spatial Statistics, see [12] for an overview. We use

the Hy'(RY) notation instead of WJ"(), because we work on the full space and
define Sobolev spaces via Fourier transforms.

The recovery of functions f from values f(x;),..., f(x,) onasetX, = {x,...,x,} C
R? of data points can be uniquely done by a function sx,.r € J generated by the
kernel translates K (xp,-),...,K(x,, ), and the pointwise error bound is

|F(x) = sx,.5(x)] < P, (x)[| fllk forall x e R, f € £ (1)

Here, the Power Function Py : R? — R arises. It is the distance of &, to the span
of all 5xj, 1 < j <ninthe norm of the dual #*. In Spatial Statistics, sx, r(x) is the
best unbiased linear predictor for f(x) givenall f(x;),..., f(x,) under the random
field with covariance function K, and P)%n (x) is the variance of this prediction. For
what follows, the Power Function has the alternative definition

Px,(x) =sup{f(x) : fe X, fllx <1, flx;)=0,1<j<n}. (2

3 Bump Functions

We look at a special case of compactly supported functions first. General com-
pactly supported functions will come up later.
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Definition 1. A bump function of support radius r is an element of the set
By:={bex : b0)=1,b(y) =0 forall |y|,>r}
of functions on K.

In spaces % consisting of analytic functions, the set 2 will be empty, and Corol-
lary [1lin Section [3 gives a sufficient criterion in terms of kernel smoothness. But
for most of the paper, existence of bump functions is assumed, and then they exist
for all scales, as shown in Section

This calls for optimizing bump functions, and a typical application will be in Sec-
tion [l

Definition 2. A bump function b} € 28, is norm-minimal, if
167||x = inf{[|b[x : b€ Br} =:B(r),
and we call B : R~y — R~ the bump norm function.

These functions are the main topic of the paper, but many results extend to general
compactly supported functions.

4 A Simple Application

The following result is a good motivation to investigate bump functions. Its con-
sequences are elaborated in [[17] concerning Trade-off Principles between errors
and stability. Let X, = {x1,...,x,} be a set of data points in R?, and define the
distance
dist(x,X,) = min |x—x;
(1 X) = min [lr—x-

from a point x to X,.

Theorem 1. Then the Power Function Px satisfies

1
P — 3

for all bump functions b with support radius dist(x,X,) or larger.
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Proof. Any such bump function has zero as its interpolant, and thus
1= [b(x)| < Px(x)[|b] x
by the standard error bound (I). O

Inequalities like this provide lower bounds for pointwise interpolation errors, and
these bounds are best if the norm is minimized. This is why we look at compactly
supported functions with minimal norm.

We shall see in (@) that in Sobolev spaces H}'(R?) the bump norm function f(r)
behaves like r4/2~" and thus () yields a simple counterpart to the standard upper
bounds of the Power Function, proving their asymptotic optimality. An earlier but
much more complicated proof goes back to [13]]. If the error is measured in %,
all other interpolation techniques have larger errors. This proves that (3) is also a
lower bound for errors of all other interpolation processes in Sobolev spaces. The
paper [6] works in a somewhat different context, but it also uses bump functions
to prove the optimal possible convergence rate for interpolation and derivative
approximation in Sobolev spaces.

Papers using bump functions for different purposes are [11, [7, 5, [10], but there
will be many others. None of these papers look at bump functions in detail.

This calls for an investigation of bump functions and the bump norm function for
more general cases, but it turns out that this runs into serious unexpected difficul-
ties that are interesting in their own right.

5 Existence Problems

It is clear that compactly supported functions exist in all kernel-based spaces that
only require certain finite smoothness properties, like Sobolev spaces Hg‘(Rd)
for m > d /2. Wendland functions are examples that even work with univariate
polynomials [21] of minimal degree, or with certain additional factors [15].

For other kernel-bases spaces, e.g. those based on multiquadrics and Gaussians,
the existence of compactly supported functions is a serious problem. Clearly,
there are C* functions with compact support, but one has to find some that lie in
the given native Hilbert space, i.e. the Fourier transform has to satisfy a specific
decay property. The following negative result uses the fact that exponential decay
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of Fourier transforms implies local analyticity around zero, contradicting compact
support when applied to compactly supported functions.

Lemma 1. Assume that the d-variate Fourier transform f of some Fourier-transformable
function f on R¢ has exponential decay

|[/(@)] < Cexp(—c[|@]2) for all ® € R”.

Then the function is analytic in a ball around zero of radius proportional to c, with
a factor depending on C and d.

Proof. The derivatives of f at zero are bounded by

[D%f(0)]

IN

(2m) 472 Rd|f(w>ll(iw)“ldw

IA

(21)-4/2C / exp(—cl|o]}2)|@%|de

IN

(2m)~4C Rdexp(—CIlell/\/E)|w|'“'dw

IA

d
(27r)_d/2CH A%exp(—c\a)j\/\/gﬂwj\“fdwj
j=1

d+|cf
< (2m)~42c2¢ <ﬁ> o!

c

due to

o0

Lol Vaiar = 2 /0 exp(—ct/Vd)i"dr
= Z@Awexp(—s) (@) ds
n+1
= 2(@) /Oexp(—s)s”ds

n+1
= 2<ﬁ> ' n!.

This implies convergence of the Taylor series in a region

{xeRY: |x|<r, 1<i<d}
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around zero defined by a vector r = (ry,...,ry) of adjoint radii of convergence, if

DEF(0) o[

<1
o! -

11m| Oc|—><><>

holds [19]]. Up to d-dependent or constant factors, we have to look at

1/|al 1+d/|al

o! c

‘D"‘f (0)

to get the assertion. O

Gaussians admit arbitrarily large ¢, while inverse multiquadrics have a fixed max-
imal ¢ depending on the kernel parameters.

Theorem 2. The native space of the Gaussian consists of globally analytic func-
tions, i.e. the local power series expansions all exist and converge globally. The
native space of d-variate inverse multiquadrics generated by the kernel K (x,y) =
(14 |jx—y|13) ™™ consists of locally analytic functions, i.e. the local power series
expansions all exist and converge with at least a fixed radius of convergence. [

Applying analytic continuation if necessary, we get

Corollary 1. In spaces generated by kernels with at least exponentially decaying
Fourier transform, there are no compactly supported functions. 0]

Consequently, all argumentations using compactly supported functions fail for
such cases.

These results are not really surprising. Recall that there are no compactly func-
tions in univariate complex analysis or in spaces of harmonic functions, by the
Maximum Principle. In addition, kernels arising from the Hausdorff-Bernstein-
Widder representation are analytic and therefore never compactly supported. The
above result is slightly different, but similarly negative.

Other cases of Native Spaces without compactly supported functions are those
whose kernels have power series expansions in the domain of interest. These are
handled in [23] 24].

We now prove existence of norm-minimal bump functions, the generalization to
compactly supported functions being evident later.
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Theorem 3. If the set B, of bump functions of radius r is not empty, the bump
norm function B(r) is attained at a unique bump function b} € %,, i.e. B(r) =
167 |-

Proof. This follows from a standard variational argument. We start with an ad-
missible bump function b, and approximate it from the closed linear subspace

B ={be.# : b(0)=0,b(y)=0 forall |y, >r}
to get some b? € 2% with the orthogonality property
(b, —b°,b%) g =0 for all b € A.

Then we define b} := b, — l;(r) € %, and take an arbitrary b, € %, to get

brll% = llbr— by + byll%
= |lbr = Byllg +2(br — by, b7 )k + 167 I
= |lbr=b7lI% + 1671I%
> ||1b7 k-

O

The proof generalizes to any compact domain Q C R? and an arbitrary point x in
its interior for fixing the value 1. Uniqueness follows similarly, and implies

Corollary 2. For Radial Basis Functions (RBF's), norm-minimal centralized bump
functions on balls are radial, if they exist. 0]

This makes it easy to deal with such functions, once the radial form is known or
calculated to sufficient precision.

6 Properties of Bump Functions

From the definition, we have

Theorem 4. Norms ||b}||x = B(r) of optimal bump functions b} increase with
decreasing radius. 0]

A second optimality principle is

Theorem 5. Norm-minimal bump functions have maximal support radius under
all bump functions with norm up to one.
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Proof. Assume a bump function b, for radius p < r. Then

1bpllx = B(p) = B(r) = b k-
O

The bump norm function cannot decrease to zero for large r, because there is a
positive lower bound:

Lemma 2.
B%(r) > 1/K(0,0) for all r > 0.

Proof. Let b be any bump function at 0, of arbitrary radius r. Then

1=5(0) = (b,K(0,-))k < [[bl|x[[K(0,-)[[x = [|6]x/K(0,0).

This is just a special case of the general embedding inequality

F@) = (K@= < I FlI&IK =) [k = |l VK(0,0) forall f€ ", xeR.
A third optimality is

Theorem 6. Under all bump functions with norm up to one, the maximum value
at zero is attained for b} /|| b} || k.

Proof. The optimal value is surely not less than 1/||b}||x. If b, is any bump
function with ||b,||x < 1, the function b, /b,(0) is admissible for norm minimality,
and thus

proves that the optimal value is at most 1/||b}||x. O

We can rewrite this as

1
AP sup{f(0) : |Ifllx <1, f(x) =0 forall |lx[]2 > r}

%
and compare with (2) to get the Power Function value Pra\ g (9)(0) for transfinite
interpolation on all points outside the ball B,(0). Note that this realizes the optimal
case in (3).
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7 Scaling Laws

Now we check bump functions under scaling. To avoid clashes of indices, we use a
scaling operator S, acting on functions f on R as S,.(f)(x) = f(x/r) for all x € RY
and r > 0. If f is supported on a ball B;(0) with radius r around the origin, the
scaled function S,(f) is supported on the ball B,(0).

But norm-minimality does not scale that way. If the kernel K is fixed, the optimal
bump function b7 for radius 1 may be scaled into S,b] to be admissible on B,(0),
but this need not be equal to b;. By norm-minimality,

by |lx < ||Sb1]lk,

and this is all we know. Figure [2| below demonstrates numerically that these two
differ, because the shape of b; changes with r in a nontrivial way.

But scaling functions is also related to scaling kernels. Therefore we locally
change the notation b} to b: x 1f the kernel K is used, and we may scale kernels
K with S, into S,K as well. However, since ||f||x = ||S,f]|s,x holds by [10] for
all functions in the native space of K, we can apply this to all non-optimal bump

functions of the appropriate support radii to get

15:b1 k lls.x = D7 k|lx = inf[b1[|lx = inf|[S,by[s,x = inf[brlls.k = [[b7s,kls,&-

Therefore the law
SrbiK = b;S,K

connects scaling of norm-minimal bump functions with scaling of the kernel.

But it is more interesting to fix the kernel and vary the radius . We focus on
kernels K with

R(0)=0(1+|0|;"), 0 e R, o], — o )

with B > d and a positive constant C. For the Matérn kernel generating Sobolev
space Hy'(RY) we have § =2m > d.

We bound the d—variate Fourier transform of any scaled function S, f(x) = f(x/r)
via S, f(@) = rf(rm) to get

Isiflk = [, 1S (@)P0+ [o]3)do
= 2 [ o) P+ P rol)do
R4
= AP IFPCE + Ini)dn.
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up to constant factors. Now for » < 1 we find
IS fllx < rPlfik,
and for lower bounds we use
IS Az = rPlrik

using the correspondent seminorm. When we apply all of this to bump functions,
the seminorm can be bounded below by the norm up to a factor, due to Poincaré
inequalities.

Theorem 7. In spaces generated by kernels with (4)), the bump norm function
behaves like
B(r) = |6}k = ©F*B/2) for r — 0. (5)

In Sobolev space Hy'(RY), this holds for B = 2m.
Proof. For an upper bound we use

1651k < infl|br || = infl|S:b1[|k < P61 %
inserting arbitrary bump functions b; and b,, The other direction is

1B:N1% = 1IS:S1 0517 > riPsy,b51%
r4=P|S, b} |% inf|by|%

>
> Cinf|by||% =C||bt]|%

O

We now check scaled versions of norm-minimal bump functions. Our main tool
is

Theorem 8. /10, Thm. 1]
For all f in the native space of kernels with () and all € > 0,

IS1/ef 13 = 1 Ik = © (e max(1,6™)) I/} O
We apply this to norm-minimal bump functions and get
1571% < 11511 I = © (# max(1,r8) ) 161 .

Therefore we can scale norm-minimal bump functions without asymptotic loss:
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Corollary 3. Under the assumption (4), scaled optimal bump functions satisfy

I51/eb; 13 = © (e max(1,67P) ) 167 3,
where Sy by is a non-optimal bump function with support radius re.

Figure[2lshows that the true bump functions b} differ from scaled versions b7 (-/r),
because their shape varies non-trivially with 7.

Again, all of this will generalize to compactly supported functions on arbitrary
domains Q with a fixed interior point x. By a shift, x can be assumed to be the
origin, and then the domain is scaled as S,Q.

8 Characterization in Hilbert Space

To get a constructive characterization of bump functions, consider the closed sub-
space
Vii={ve : v(x)=0forall |x|| >r}

of %, and there are bump functions iff
v(0)=0forallveV, (6)
1s not satisfied.

Theorem 9. If there are bump functions at all, the unique norm-minimal bump
function b’ on B,(0) has the form

by :=gr/gr(0) (7

for the projection g, of K(0,) onto V,. The squared norm of the solution is

k= gr(O) ~ 2,(0)

Proof. If K(0,-) were orthogonal to V,, the equations

®)

(K(0,-),vr)k =0=v,(0)
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would hold for all v, € V,,, implying (€) and the nonexistence of bump functions.
Let P, be the Hilbert space projector onto V,. Then g, := P.K(0,-) is uniquely
defined and nonzero. Furthermore, K(0,-) — g, is orthogonal to V,, i.e.

(K(Ov')_gravr)l( = 0,

(0) = (v ®

for all v, € V,.. In particular, setting v, = g, yields

8r(0) = (gr,8r)x > 0.

Therefore (7)) solves the problem and (8]) holds. In fact, for any other bump func-
tion b, the difference w, = b} — b, is in V, with w,(0) = 0, and

* _ 1 w _ WV<0) _
(by,wy) = 2-(0) (&rwr)k = (0) =0

proves
161k = 1167 = wlli = 1611 + lIwellk > [17]]%-

O

By the second identity of (9)), g, is the Riesz representer of the functional &y on
the Hilbert space V,. We can generalize this to g,, := P.K(x,-) to get the Riesz
representer of d,, and the kernel

K, (x,y) := (&rx,8ry)k for all x,y € B,(0) (10)

is reproducing on the Hilbert space V,. This kernel lives on the interior of the ball
B,(0) centred at zero with radius r. Figure [Il shows the kernel translates g . in

Sobolev space V([)/ %(—1, 1)). The calculations are based on Section [

Theorem 10. [f % = Hy'(R?), the kernel K, of (I0) is the reproducing kernel of
the space Iflg"(Br(O)) O]

It is easy to generalize this to smoothly bounded domains Q C R¥ instead of the
ball B,(0).

There is a connection to Power Functions on infinite point sets. We can define the
Power Function for infinite data outside the ball B,(0) as

PHXHZr(x) =sup{v(x) : |v|g < L,veV,}. (11
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Non-centred functions g, in 1D for r=1 with varying x

\!

G

ol
%
! LY

/
=

-1 -0.5 0 0.5 1

Figure 1: Kernel translates g; , for the 1D exponential kernel for varying x.

Our standard criterion (6)) for nonexistence of centralized bump functions now has
to be replaced by V, = {0}, and then the Power Function is zero.

Theorem 11. In general,
Plo>r(x) = [|grxllx for all x € RY,

and if there are bump functions, the supremum in (1)) is attained at g,(x)/||grx| k-
In particular, Pjy>,(0) is attained at by /||b}||k, proving

Pioj=r(0) = 7(0) /116711 = 167115 (12)

Proof. We assume that there are bump functions. Then g, /||| x is admissible,
and

Pie>r (%) = 8rx(0)/llgrallx = llgrllx-
For all v € V,. we have (v, g,.)x = v(x), and therefore

vl < [Ivllx llgnllx

proves Py >,(x) < ||g:xl[x. In the nonexistence case, all g, are zero, like the
Power Function. O

The relation was observed already in [17] as the extremal situation of a trade-
off principle that relates small Power Functions to large norms of bump functions.
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Theorem [I1l has an interpretation in Spatial Statistics. If a random field R on R?¢
has observations in all x with ||x[[2 > r,

Piy=-(0)* = |Ib}|I%°

is the variance of the Kriging predictor, i.e. the best linear unbiased estimator
from the data. For Matérn covariances generating HQ”(R"), Section[/|has shown
that the variance behaves like 72" ~¢. Cases with nonexistence of bump functions
are discouraged in Spatial Statistics, because information on an infinite point set
like the complement of a ball implies total information.

Again, everything works the same for general domains Q C R¢ with a fixed inte-
rior point x. One has to project K(x, -) onto

Vo={ve X :v(y)=0forally ¢ Q}

and renormalize the result to be 1 at x.

9 Analytic Characterization

Here, we focus on J# = Hé"(]Rd ) and want to apply Real Analysis to find more
specific results on norm-minimal bump functions, including formulae ready for
computational implementation. Since the problem of constructing norm-minimal
bump functions can be written as a quadratic optimization with infinitely many
constraints in an infinite-dimensional space, there is a variational problem with
Lagrange multipliers in the background, but we proceed directly to the construc-
tive solution.

As already stated, the subspace V, of (€) is the closure of Ci’(B,(0)) under the

native space norm. In case % = HJ'(R?), it is I(-)I'z”(Br(O)) in standard Sobolev
space theory, and the boundary conditions are well-known [16]]. By sources on
trace theorems, e.g. [20, Thm, 10, Thm. 11], the boundary conditions for embed-
ding H%'(B,(0)) into Hy*(R) consist of the classical radial and normal derivatives
d/ _

Yir = a—vijr(())? 0< J<m-— 1/2
whose extensions map W;"(B,(0)) to Wszjfl/z(c?Br(O)), 0<j<m—d/2. We
integrate these over the boundary to define the functionals

2’J"(]C):/&B (O)’}/Ji’(f)\xd-xﬂ O§]<m—1/2
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and the functions
8jr(x) 1= A7 K(x,y),

where A , acts on the variable y, as indicated by the superscript. These are radial,
i.e. rotationally invariant, because the traces of K(x, -) on the boundary just rotate
with the direction of x, but the integral over the boundary stays the same.

Next, we need the positive definite kernel matrix with entries
l,ir/ﬁtjyer(x,y) =X ,8jr(x), 0< jk<m—1/2
and solve the r-dependent linear system
j<m—1/2
gr(0) =4 K(30)= Y cj(nAA K(xy),0<k<m—1/2 (13)
, =
for functions ¢;(r), 0 < j <m—1/2.

Theorem 12. Norm-minimal compactly supported functions b} for Sobolev spaces
HY(RY) can be calculated via the radial function

j<m—1)2

gr(y):=K0,y)— Y (g ) (14)
j=0

in the above way, finally using ().

Proof. By Theorem [9] of Section [8] we need the projection PIO{’” in H'(RY)
2

(B(0))
onto H%'(B,(0)) and the function

ri :Po KO,
800 = P s, o) K (0

which is b} up to a factor by b} (x) = g,(x)/g,(0). Due to (9), the necessary and
sufficient optimality conditions are g, € H 7(Br(0)) and

(K(Ov')_gravr)ng(Rd) =0
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forallr eV, = ;I’Z"(Br(O)) But implies

j<m—1)2

(K(O,) —ngr)HE"(]Rd) = < Cj(r)ng,Vr)
j=0

j<m—1/2
= Z Cj(r)(gjwvr)H;"(Rd)
j=0
j<m—1/2
= Y GOALKCY. )
=0
j<£1—1/2
= Y A
j=0
= Oforallv, €V,

Hy'(R)

The system (I3)) is the same as
A g(y)=0,0<k<m—1/2,

but since g, is radial, the boundary values and radial derivatives are constant and
therefore zero. 0J

This seems to be the first case handling infinitely many data with infinitely many
kernel translates, in this case placed on the r-sphere and treated in a rotationally
symmetric way. The definition of the functions g; , cares for orthogonality to V,
and involves all of these translates fairly. The linear system (I3]) has a different
purpose: it cares for the correct smoothness of the result on the boundary. If the
gj,r and their derivatives are calculated on the boundary with sufficient accuracy,
the system can be set up and solved like any other Hermite interpolation.

For domains Q with a fixed interior point, the proof logic stays the same, but the
radiality arguments fail. Everything works as long as the trace theorems are valid,
but this fails for pathological subdomains.

We add a remark on the background, connected to the old theory of L-splines [18].
The inner product (f,g)k can be written as (Lf, Lg) (g« for a pseudo-differential

operator L : % — L,(R?) defined by

Lf(w) = f(@)\/R(w).
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Then the reproduction equation f(x) = (f,K(x,-))k = (Lf,LK(-,X))1,(q) is a way
to define that (L*L)’K(y,x) = & holds for all x € R?, i.e. the kernel is a funda-
mental solution. In the Sobolev case Hé"(]Rd ) for integer m, the operator L*L is the
classical elliptic differential operator (Id — A)™. Compactly supported functions
on a smooth domain £ must then obey the boundary conditions for the Dirichlet
problem for L*L on Q with zero boundary conditions. Consequently, bump func-
tions may already be present in the literature on elliptic PDE problems. Anyway,
they are possibly useful in the Method of Fundamental Solutions [2} 4].

For all translation-invariant kernels, we can shift the norm-minimal bump func-
tions to get functions by ,(x) := by (x —z) for all x € R4 that should be useful for
numerical calculations.

Theorem 13. Two shifted bump functions by, and by, are orthonormal in the
Hilbert space ¥, if ||y —z||» > 2r.

Proof. Clearly,

(byy, K(-,x)) ¢ = by, (x) = 0 forall [[x —y|[2 > 7,

but since by, is based on kernel translates on z and all u with ||u —z|| = r by the
above characterizations, the assertion follows. O

Kernel matrices based on norm-minimal compactly supported functions will be
sparse because entries vanish whenever points have distance 2r or more. But
except for a simple case handled in Theorem [14] the positive definiteness is an
open problem.

10 Examples

We first consider the simplest Sobolev space H}'(R?) for m = 1 = d with the radial
exponential kernel K(x,y) = exp(—|x —y|). Then the functional

20, (v) = v(—=r) +v(r) for all v € W5 (R!)
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1 Bump functions in 1D for m=1 with varying r ; Bump functions in 1D for m=1 with varying r
0.9r 1 09r
0.8- 1 0.8r
0.7r 1 o7k
0.6r 1 0.6
0.5r 1 05
0.4r 1 04r
0.3r 1 03
0.2r 1 02
0.1- 1 01p
E}3 -2 -1 6 1 2 3 —010 -5 6 5 10

Figure 2: Bump functions for the 1D exponential kernel for varying r. Left: r =
1,1.5,2,2.5,3, right: r=1,...,50. The red line is the kernel K(0,y) = exp(—|y|)
occurring numerically in the limit.

“integrates” over the trace operator 7'(v) = (v(r),v(—r)) € R2. With some explicit
calculations omitted,

gor(x) = exp(—|r—x|)+exp(—[—r—x)
g&r(x) = expg—IXI)—co(exp(—lr—X|)+eXp(—|—r—x\)

colr) = cosh(r)
o - B0

where the equation for ¢y follows somewhat easier from setting g,(x) = 0 for
x = %r. The final result is

gr(x) _ sinh(r — |x|)
2-(0) sinh(r)

This is the situation of Figure[2l The corresponding general kernel translates in the
sense of (I0) are in Figure [I, obtained via projection of K(x,-) instead of K(0,-).

bY(x) = (15)

Theorem 14. The norm-minimal compactly supported function (L3) is positive
definite.
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Proof. With alittle help from MAPLE, the Fourier transform of this is the positive
function

() — 1 +exp(2r) —2exp(r) cos(rw)
(exp(2r) — 1)(1 + @?)
(1 —exp(r) cos(r®))? +exp(2r)(1 — cos*(rm))
(exp(2r) = 1)(1 + @?)

up to positive constants. Conversely, the above formula provides a positive defi-
nite band-limited kernel. U

The same kernel works for all cases with 2m —d = 1, but things get much more
difficult for d > 1, because we now have to integrate over circles, using

2T
Xor(f) = /0 f(rcos@ +rsin(@))deo.

The resulting function go, is an infinite linear combination of kernel translates
centred at zero and the sphere of radius r, while in 1D we only need translates at
—r,0, and r. To keep things simpler, we shall use radiality whenever possible in
what follows.

We first consider d =2, m = 3/2 and set x = r(cos(¢),sin(¢)) and z = (1,0) to
get
e —12]|* = (reos(¢) —1)* + (rsin(g))? (16)

and

o) = [ exp (= /ireos(e) —12+ (rin(p)?) do

2n
- / exp(— r2+t2—2r|t|cos((p))d(p
0

because the cases t and —¢ have the same trace on the circle. The ingredients for
(13)) are go -(0) = 2mwexp(—r) and

25,9, K (x,5) = 46,80, (x) = 27g0,-(r2)

7)

because g , is constant on the boundary and equal to go ,(rz). Therefore

_exp(—7)
gO,r(rZ>

co(r)
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and we get
exp(—r)go.r(x)
gO,r(r Z) '
Figure [3 shows the norm-minimal bump functions (solid) in the 1D (blue) and
2D case (red). The 2D case has a vanishing derivative at zero, visible by zoom-

8r(x) = exp(—|lxll2) -

ing in, but still just continuity at r. But note that functions in W23 / 2(]Rz) are only
continuous, not continuously differentiable. For comparison, the Wendland func-
tions are added as dashed lines. It is remarkable that in the 2D case the Wendland
functions have derivative discontinuities at zero, while the optimal bump func-
tions have them at r. In case r = 10, the exponential decay of bump functions is
apparent, while Wendland functions decay polynomially. Smaller » behave much
like scaled versions of the case r = 1.

1

Bump functions for r=1

Bump functions for r=10

0.8F

0.7p

0.6

0.5¢

0.4

0.3f

0.2r

01F

0

0.9r

1 09

1 o8l
1 o7k
1 06k
1 o5k
1 04f
1 03r
1 02k

‘\ . 4 01,

1 ~

0

0.2

0.4

0.6

0
0

Figure 3: Bump functions (solid) for the exponential kernel, » = 1 (left) and r =

10 (right). The red curves are for W23 / 2(]Rz), the blue curves for W, (R!). The
corresponding Wendland functions are dashed.

Staying in the bivariate setting with larger m just uses different kernels, but now
we get the linear system (I3) to solve. If we want a derivative condition in R2,
we can take m = 2.5 or m = 2. When examining the case m = 2, the function
g1, has a singularity at the boundary, due to nonexistence of second derivatives
in WZZ(]RZ). For m = 2.5, results are in Figure 4l The corresponding Wendland
function ¢3 1 () = (1 —1/r)% (1 +4¢/r) is in C? and vanishes of third order at r,
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Bump functions in 2D for m=5/2 with varying r Bump function in 2D for m=5/2 with r=1

1 2 3 4 5 6 7 8 0 0.2 0.4 0.6 0.8 1

Figure 4: Left: optimal bump functions for the 2D exponential kernel for

W25 / 2(]Rz) with varying r. The red line is the normalized kernel occurring in the
limit. Right: the case r = 1 with the Wendland function ¢3 ; in cyan and dashed,
while the exponential spline is blue and dashed.

see the cyan dashed line. The norm-minimal compactly supported function seems
to have the same smoothness at zero and at the boundary.

Readers may be tempted to take the span of exp(x), x exp(x), exp(—x), x exp(—x)
and determine an exponential spline with the four appropriate conditions at zero
and r. The result is the dashed blue line in the right-hand plot of Figure 4 With
the help of MAPLE, it is easy to show numerically that this cheaply computable
compactly supported radial basis function is not positive definite in dimensions
d = 1,2, and 3. Unfortunately, MAPLE cannot handle integrals like well,
preventing an easy proof or disproof of positive definiteness of the norm-minimal
bump function in R?. It was computed numerically using MATLAB.

11 Summary, Conclusions, and Open Problems

For a given support radius r, each Sobolev space Hy'(R?) with m > d/2 has a
unique “bump” function with minimal norm, value 1 at the origin and vanishing
outside the interior of the ball B,(0) with radius r around the origin. Under all
compactly supported functions with norm up to one and value one at the origin, it
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has smallest support. And under all functions with support in B,(0) with norm up
to one, they attain the maximum value at zero, up to a factor.

Such functions are an intrinsic and characteristic feature of the Sobolev space and
could be called S-splines.

They are radial, and their radial univariate profile can be precalculated to high ac-
curacy by the construction of Section9l By the results on scaling in Section[7] they
can be downscaled to smaller support radii, at asymptotically no loss. There are
connections to upper bounds of convergence rates of kernel-based interpolation,
because they are Power Functions for data outside a given ball. In Spatial Statis-
tics using random fields with Matérn kernels, they give the variance for Kriging
estimation at zero provided that there is full information outside the r-ball.

In Hilbert space terms, these functions are obtainable by renormalization of the

projection of the reproducing kernel in Hy'(R?) onto H 7(Br(0)). In terms of Real
Analysis, they are computable by applying the trace operator to the reproducing
kernel under radial symmetry.

For interpolation or approximation in Sobolev spaces, their translates provide a
compactly supported radial basis, leading to sparse matrices. Except for Theorem
[I4] for the simplest case, there are no results yet on linear independence or pos-
itive definiteness. In particular, their Fourier transforms are not yet known, but
they must have an optimality property as well. The functions seem to be bell-
shaped [8] and pointwise increasing at all x € R for increasing r with upper limit
¢ (||x||2), but this is still open. For use in meshless methods for PDE solving, they
are shape functions [1] that deserve further investigation. Finally, they may lead
to new multivariate wavelet constructions, like many other compactly supported
functions.

To make the numerical application of optimal compactly supported functions eas-
ier, a follow-up paper should publish the radial profiles in full computational ac-
curacy. This opens the way to various sparse meshless methods for interpolation,
approximation, and PDE solving. Then it is interesting to see how much band-
width is needed to let them work at maximal possible convergence rate.

The results of this paper should generalize to any kernel-based Hilbert space with
limited smoothness, and hopefully also to Beppo-Levi spaces generated by con-
ditionally positive definite kernels. Also, the restriction to balls centred around
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the origin is easy to overcome, losing radiality arguments. Then it is interesting
to construct them on tilings of the space, like finite elements. Their superposition
will stay in Sobolev space because of zero boundary conditions.

Final Remarks

There was no funding except the standard retirement program for professors in
the state of Lower Saxony, Germany.

This work would not have been possible without the long-term friendship with
Elisabeth Larsson (Uppsala) and Oleg Davydov (Giellen), leading to publications
[10L6]. Bump functions were a central tool in these papers.
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