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The general onept an be desribed as follows. Suppose a set X =fx1; : : : ; xNg � 
 � Rd of N distint points oming from a ompat subset
 of Rd is given. These points will be alled data sites. Suppose furtherthat N data values f1; : : : ; fN should be interpolated at the data sites. Theeasiest approah is to �x a symmetri kernel funtion � : 
 � 
 ! R andto form an interpolant sf;X = NXj=1 �j�(�; xj): (1)Obviously, the oeÆients f�jg are determined by the interpolation ondi-tions sf;X(xj) = fj, 1 � j � N . They are unique, if the interpolation matrixA�;X := (�(xi; xj))1�i;j�N is invertible. If the matries A�;X are even pos-itive de�nite for all possible point sets X � 
, regardless of the number ofpoints, the funtion � is alled a positive de�nite kernel. It is often radialin the sense �(x; y) = �(kx� yk2) and therefore de�ned on Rd � Rd .In this paper we will on�ne ourselves to the ase of positive de�nite-ness, negleting onditionally positive de�nite funtions. This is not a se-rious restrition, beause every onditionally positive de�nite kernel has anassoiated, normalized positive de�nite kernel (see for example [4℄ and [?℄).Moreover, the experiened reader will notie without problems that manyof our proofs also work in the onditionally positive de�nite ase.The generality of this interpolation method allows to deal with any setof data sites. Thus it leads immediately to the problem of �nding good oreven optimal point sets for the reonstrution proess. But despite of thenatural harater of this problem, it was only addressed in [1, ?, ?℄. Whilethe thesis [1℄ onentrated on numerial results, the other two publiationstried to investigate the problem theoretially, at least in ertain speial ases.In partiular, [?℄ shows how diÆult it is to �nd truly optimal interpolationpoints. The reason is simple: one has to minimize a highly nonlinear funtionof Nd unknowns. Hene, we will use another approah here, whih is basedon power Funtion estimates and geometri arguments.The paper is organized as follows. In the next setion we ollet allneessary material on positive de�nite kernels, power funtions, and nativeHilbert spaes. In the third setion, we introdue our onept of uniformlydistributed points for a general region 
 � Rd and show that the geom-etry of the data set is determined by a global interpolation error. In thenext two setion we introdue two di�erent greedy methods for �nding goodpoints and prove their onvergene. The �nal setion deals with numerialexamples. 2



2 Power Funtions and Native Hilbert SpaesThroughout this paper we assume 
 � Rd to be a ompat subset of Rd ,whih satis�es a uniform one ondition. On 
 we have a positive de�nitekernel � : 
 � 
 ! R. The interpolant (1) an also be written in thefollowing form. Let uj 2 VX = spanf�(�; x) : x 2 Xg denote the ardinalfuntions, i.e. uj satis�es uj(xk) = Æj;k. Then the interpolant takes the formsf;X = NXj=1 f(xj)uj : (2)Moreover, the kernel � de�nes on the spaeV
 = spanf�(�; x) : x 2 
gan inner produt via0� NXj=1 �j�(�; xj); MXk=1 �k�(�; yk)1A� := NXj=1 MXk=1�j�k�(xj; yk):It an easily be seen that � is the reproduing kernel of V
 with respet tothis inner produt, i.e. every f 2 V
 an be represented byf(x) = (f;�(�; x))�:The losure of V
 leads to a Hilbert spae with reproduing kernel �, sinethe above reprodution formula stays valid in the losure, showing how theabstrat elements in the losure an be interpreted as funtions. This Hilbertspae is often alled the native Hilbert spae to � and we will denote it byN�(
).Obviously, an inlusion of the form 
1 � 
2 leads to a ontinuous em-bedding N�(
2) � N�(
1) by restrition, whenever the kernel � is de�nedon the bigger set. In partiular, if � is a translation invariant or even radialkernel, we have N�(Rd) � N�(
) for every 
 � Rd .For a funtion f 2 N�(
) we an express the interpolation error usingthe ardinal representation (2) and the reproduing kernel property byf(x)� sf;X(x) = 0�f;�(�; x)� NXj=1 uj(x)�(�; xj)1A� ;3



so that an appliation of the Cauhy-Shwarz inequality immediately leadsto jf(x)� sf;X(x)j � P�;X(x)kfk� (3)with the power funtion P�;X taking the expliit formP 2�;X(x) := �(�; x)� NXj=1 uj(x)�(�; xj)2�= �(x; x)� 2 NXj=1 uj(x)�(x; xj) + NXj;k=1uj(x)uk(x)�(xj ; xk):In other words, the power funtion is nothing but the norm of the point-wise error funtional, and it an be numerially evaluated from the Lagrangebasis.Typially, error estimates lead to the problem of bounding the powerfuntion in terms of the �ll distane,hX;
 = supx2
 minxj2X kx� xjk2:This is, in general, done by onsidering the square of the power funtion fora �xed x 2 
 as a quadrati form of the oeÆient vetor (u1(x); : : : ; uN (x)).One an show that this vetor minimizes the quadrati form over all vetorsu 2 RN . Then a suitable vetor (eu1(x); : : : ; euN (x)) is onstruted whihallows an easier way of handling the quadrati form and yields the errorbound in terms of the �ll distane, beause it provides an upper bound onthe square of the power funtion. We will not disuss the details here butrefer the reader to [6℄. Instead, we remark that this minimization propertyhas another onsequene. If X � Y are two point sets, then the assoiatedpower funtions must neessarily satisfyP�;X(x) � P�;Y (x); x 2 
;beause the Lagrange basis for X, extended by some zero funtions, is ad-missible for the minimization of the quadrati form with respet to Y . Notethat the above inequality holds pointwise and everywhere in 
. It will bean important ingredient for the greedy methods to be desribed later.To provide the reader with examples, we take a shift-invariant kernel�(x; y) = �(x � y), where � : Rd ! R is integrable and thus has a Fouriertransform b� de�ned byb�(!) = (2�)�d=2 ZRd �(x)e�ixT !dx:4



In this ase, the native spae norm of f beomeskfk2� = (2�)�d=2 ZRd j bf(!)j2b�(!) d!:Hene, if b� satis�es�(1 + k!k22)�� � b�(!) � C�(1 + k!k22)�� (4)with � > d=2 and two onstants C� � � > 0, the global native Hilbertspae N�(Rd ) is norm{equivalent to the Sobolev spae W �2 (Rd). Moreover,the interpolation error an be bounded bykf � sf;XkL1(
) � Ch��d=2X;
 kfkW�2 (Rd): (5)In ase of in�nitely often di�erentiable basis funtions �, suh as Gaus-sians �(x) = e��kxk2 , � > 0, or inverse multiquadris �(x) = 1=pkxk22 + 1the error even deays exponentially, but only for funtions from a rathersmall native spae.3 Optimally Distributed Data SitesThroughout this setion we shall assume that our kernel � is translationinvariant, integrable, and has a Fourier transform satisfying (4).Our �rst goal is to show that a data set whih allows good approximationfor all funtions from the native spae annot have a large region in 
without enters. In other words the �ll distane hX;
 must neessarily besuÆiently small.Theorem 3.1 Let 
 be the losure of an open and bounded region in Rd sat-isfying an interior one ondition. Suppose that the kernel � is translationinvariant and its generating funtion � is integrable with a Fourier transformsatisfying (4) with � > d=2. Then for every � > � there exists a onstantM� > 0 with the following property. If � > 0 and X = fx1; : : : ; xNg � 
are given suh thatkf � sf;XkL1(
) � �kfk�; for all f 2W �2 (Rd); (6)then the �ll distane of X satis�eshX;
 �M�� 1��d=2 :5



Proof: Without restrition, we an assume that 
 ontains a suÆientlysmall ball. We �x an integer k suh that 2k > � + d=2. Next, we hoosea funtion  2 C2k0 (Rd) from [5℄ having support in the open unit ball andbeing bounded by k kL1(Rd) = j (0)j = 1. Elementary alulus givesd�` (!) = Xj�j=` `!�![D� (!) = b (!) Xj�j=` `!�! (i!)2� = (�1)`k!k2`2 b (!)for all 0 � ` � k, where we have used the standard notation for partialderivatives and the iterated Laplaian. Hene, if we de�ne the onstantK :=  kX̀=0 �k̀�(�1)`d�` L1(Rd)we get���(1 + k!k22)k b (!)��� = ����� kX̀=0 �k̀�k!k2`2 b (!)����� = ����� kX̀=0 �k̀�(�1)`d�` (!)����� � K ;whih shows for every s � k thatj b (!)j � K (1 + k!k22)�k � K (1 + k!k22)�s:Moreover, if we sale  by setting  h :=  (�=h), we �ndj h(!)j = hd b (h!)� K hd(1 + h2k!k22)�s= K hd�2s� 1h2 + k!k22��s� K hd�2s �1 + k!k22��s ;whenever h 2 (0; 1). Thus, if 2s > � + d=2, the funtion  h belongs to thenative spae W �2 (Rd) of � and its norm an be bounded byk hk2� = (2�)�d=2 ZRd j h(!)j2b�(!) d!� (2�)�d=2K � h2d�4s ZRd(1 + k!k22)��2sd!=: M2h2d�4s: 6



Finally, if we set 2s = �+ d=2 with � > � we havek hk� �Mh d2��:Given an arbitrary X with �ll distane h = hX;
 we an �nd a point x 2
 suh that the ball of radius h around x ontains no data point. Weinterpolate the funtion  h shifted to that point. Then all data sites fromX are outside the support of  h so that s h;X = 0. Then the standard errorbound leads to1 = k hkL1(
) = k h � s h;XkL1(
) � �k hk� �M�h d2��;whih immediately gives the stated result. 2Unfortunately, the onstant M� tends to in�nity when � tends to �.Hene, we do not get h��d=2X;
 � C�as we would have expeted from (5), but we get as lose as possible. More-over, our proof does not work in ase of the Gaussian, sine it follows fromthe Paley-Wiener theory that there annot be a ompatly supported fun-tion in the native spae of the Gaussian. Both drawbaks an be remedied ifwe make the additional assumption that X is already quasi-uniform, whihmeans that the �ll distane hX;
 essentially behaves like the separation dis-tane qX := minj 6=k kxj � xkk2.In this partiular ase we an de�ne the funtionfy = �(�; y)� NXj=1 uj(y)�(�; xj)for every y 2 
. For this funtion we obviously havejfy(y)� sfy;X(y)j = P�;X(y)kfyk�;i.e. there is equality in (3). Hene, the assumption on the approximationproperties of the set X gives � � P�;X(y)and the desired results follow from lower bounds on the power funtion.Suh lower bounds have been thoroughly studied (see for example [2℄) butare also in general given in terms of the separation distane. The paper[3℄ ontains lower bounds for all relevant basis funtions. Quasi-uniformitybrings these bounds bak to the �ll distane.7



4 A Greedy Data{Independent MethodFor numerial purposes it is ruial to have a pratial method that produeswell{distributed point sets. This an for example be ahieved by a greedyalgorithm that generates larger and larger point sets by adding a maximumof the power funtion with respet to the preeding set.We start with X1 = fx1g for x1 2 
 arbitrary. ThenXj := Xj�1 [ fxjg with P�;Xj�1(xj) = kP�;Xj�1kL1(
); j � 2: (7)Pratially, we maximize over some very large disrete set X � 
 instead ofmaximizing on 
.It is the goal of this setion to show onvergene of this method in thesense kP�;XjkL1(
) ! 0 for j ! 1. To this end we make the additionalassumption that either 
 is onvex and � 2 C2(
 � 
) or, alternatively,that � 2 C2(
1 � 
1) with 
1 � 
 being onvex.We start our onvergene analysis by two lemmas on the power funtion.Lemma 4.1 The power funtion has the alternative representationsP 2�;X(x) = �(x; x)� NXj=1 uj(x)�(x; xj)= �(x; �)� NXj=1�(x; xj)uj2� :Proof: Sine the ardinal funtions uj satisfyNXk=1 uk(x)�(xj ; xk) = �(x; xj); 1 � j � N; (8)the �rst equality follows immediately from the afore-given expliit form ofthe power funtion. Moreover, (8) impliesuj(x) = NXk=1�jk�(x; xk);if (�jk) denotes the inverse to (�(xj; xk)), so that(uj ; uk)� = NXn=1 NXm=1�jn�km�(xn; xm) = �jk:8



This shows together with the reproduing property of the kernel that�(x; �)� NXj=1�(x; xj)uj2� = �(x; x)� 2 NXj=1�(x; xj)(�(x; �); uj)�+ NXj;k=1�(x; xj)�(x; xk)(uj ; uk)�= �(x; x)� 2 NXj=1 uj(x)�(x; xj)+ NXj=1 uj(x)�(x; xj);whih is P 2�;X(x) by the �rst equality. 2Note that in the seond equality of Lemma 4.1 the argument x has movedfrom uj to � when ompared to the de�nition of the power funtion.In the following result we use the notation �jf to indiate the �rst orderpartial derivative of f with respet to the oordinate j. Moreover, �1j�(x; y)shall mean that this derivative is taken with respet to the �rst argumentof �. The gradient will, as usual, be denoted by r.Lemma 4.2 Suppose � 2 C2(
�
). Then for every X = fx1; : : : ; xNg �
 and every 1 � k � d we havej�kP 2�;X(x)j � 2P�;X(x)q�1k�2k�(x; x); x 2 
:Proof: The seond representation of the power funtion in Lemma 4.1allows us to derive�kP 2�;X(x) = 20��1k�(x; �)� NXj=1 �1k�(x; xj)uj ;�(x; �) � NXj=1 uj�(x; xj)1A� :This impliesj�kP 2�;X(x)j � 2�1k�(x; �)� NXj=1 �1k�(x; xj)uj� P�;X(x)� 2P�;X(x)�1k�(x; �)�= 2P�;X(x)q�1k�2k�(x; x);9



where the last inequality holds sine PNj=1 �1k�(x; xj)uj is the interpolantto �1k�(x; xj) and hene equals its best approximant from VX with respetto the native spae norm. 2Now it is time to ome bak to our greedy method desribed in (7). Forsimpliity we de�ne Pj := P�;Xj . Remember that the point xj+1 is hosenin suh a way that Pj(xj+1) = kPjkL1(
). Moreover, sine Xj � Xj+1 wehave Pj(x) � Pj+1(x) � 0 for all x 2 
.Theorem 4.3 Suppose 
 � Rd is ompat and satis�es an interior oneondition. Suppose further that � 2 C2(
1�
1) is a positive de�nite kernelde�ned on a onvex and ompat region 
1 � 
. Then, the greedy algorithmde�ned in (7) onverges at least likekPjkL1(
) � Cj�1=dwith a onstant C > 0.Proof: From Lemma 4.2 it follows that there exists a onstant Cr > 0 suhthat krP 2j (x)k2 � CrPj(x); x 2 
; j 2 N:Hene, there exists � and � on the line segment between x and xj+1 withP 2j (x) = P 2j (xj+1) +rP 2j (�) � (x� xj+1)� kPjk2L1(
) � krP 2j (�)k2kx� xj+1k2� kPjk2L1(
) � CrkPjkL1(
)kx� xj+1k2= kPjkL1(
) �kPjkL1(
) � Crkx� xj+1k2�and, beause of Pj+1(xj+1) = 0, we haveP 2j+1(x) = P 2j+1(xj+1) +rP 2j (�) � (x� xj+1)� 0 + CrkPj+1kL1(
)kx� xj+1k2� CrkPjkL1(
)kx� xj+1k2:Both inequalities together yieldP 2j (x)� P 2j+1(x) � kPjkL1(
) �kPjkL1(
) � 2Crkx� xj+1k2�� 12kPjk2L1(
)10



provided that kx� xj+1k2 � kPjkL1(
)4Cr =: Æj :For suh an x we an ontinue by12kPjk2L1(
) � P 2j (x)� P 2j+1(x)= (Pj(x)� Pj+1(x))(Pj(x) + Pj+1(x))� 2kPjkL1(
)(Pj(x)� Pj+1(x));whih leads tokPjkL1(
) � 4 (Pj(x)� Pj+1(x)) ; for kx� xj+1k2 � Æj : (9)If we look at x = xk for some k � j, we see that Pj(xk) = Pj+1(xk) = 0,and thus kxk � xj+1k2 > Æj by (9), provided kPjkL1(
) > 0. Sine we anassume that all kPjkL1(
) are positive, and sine the Æj are noninreasing,we have kx`�xkk2 > Æ`�1 � Æj for all k < ` � j. Hene, all xk with k � j areenters of disjoint balls B(xk; Æj=2) of radius Æj=2. Moreover, the union of allthese balls is ontained in the bounded region 
� = [x2
B(x; Æ1=2). Hene,if we ompare the volume of the union of all balls B(xk; Æj=2), 1 � k � j tothe volume of 
�, we see that there is a onstant C, independent of j, suhthat j(Æj=2)d � C, and we �nally getkPjkL1(
) = 4CrÆj � 8CrC1=dj�1=d: 25 Geometri Greedy MethodPratial examples show that the greedy minimization of the power funtionusually just tries to �ll the urrently largest hole in the data by plaing anew data point lose to the enter of that hole. This strategy is independentof the radial basis in question:� Let 
 be a ompat set in Rd , and start with X0 = ;. De�ne thedistane of x 2 
 to X0 = ; as some value whih is not smaller thanthe diameter of 
, e.g. the diameter of the bounding box.� If Xn is a �nite subset of 
 onsisting of n points, pik xn+1 2 
 nXnsuh that it has maximal distane to Xn and form Xn+1 := Xn [fxn+1g. 11



If 
 is �nite, eah step of the algorithm an be arried out in O(j
j) op-erations, beause one an keep for eah x 2 
 the urrent distane to itsnearest neighbor within Xn. Updating this array of length j
j is done by�rst alulating the j
j values kx � xn+1k2 and taking the omponentwiseminimum with the existing distane array. The next point is then easilyfound by piking the maximum of the array. This tehnique an be re�ned,but we omit suh arguments here.It turns out that the above greedy algorithm works niely when it omesto �nding subsets of 
 of size n with small �ll distane hX;
 and largeseparation distane qX . De�neqn := 12 minx6=y2Xn kx� yk2dn(x) := miny2Xn kx� yk2hn := maxx2
 dn(x) = maxx2
 miny2Xn kx� yk2 = dn(xn+1) = hXn;
:Lemma 5.1 The geometri greedy algorithm produes point sets whih arequasi-uniform. To be more preise,hn � qn � 12hn�1 � 12hn for all n � 2:Proof: The left{hand and right{hand sides are lear. For X2 we haveq2 := 12kx1 � x2k2 = 12d1(x2) = 12h1:Assume qn � 12hn�1 and look atqn+1 = min�qn; 12 minx2Xn kxn+1 � xk2�= min�qn; 12dn(xn+1)�= min�qn; 12hn�to get qn+1 � min�12hn�1; 12hn� � 12hn: 212



If 
 is a bounded region in Rd , the geometri greedy method onstrutsasymptotially uniformly distributed data sets that over 
 in an asymp-totially optimal way. In fat, the balls with enters in Xn and radius hnover 
, while those with radius qn are disjoint. With
n := fy 2 Rd : dist(y;
) � qng:we �nd nqdnv1 � vol(
n)vol(
) � nhdnv1and see that both hn and qn deay asymptotially like n�1=d. Note that thisrate also ours in the proof of Theorem 4.3, but only for the Æn and qn.6 ExamplesWe start with two examples on the domain [�1; 1℄2. Everything was dis-retized on a regular set of 71 � 71 = 5041 points, and the greedy methodwas exeuted until the norm of the power funtion fell under 2 � 10�5. Forthe Gaussian with sale 1, this required 48 points distributed as shown inFigure 1. The \error" in the right{hand �gure is kPNk2L1(
)nahsehen, ob Quadrat oder niht.....with deay as a funtion of the number N of data points. As determinedby the regression line in the �gure, the deay is like N�7:2 .
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Figure 2 uses the C2 Wendland funtion with sale 15. It requires N = 100points to depress the power funtion down to 2 � 10�5. The error deays likeN�1:9 as determined by the regression line in the �gure.
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NFigure 2: Wendland's funtionFigure 3 shows the error deay when the Gaussian power funtion is evalu-ated on the data supplied by the geometri greedy method up to X48. The�nal error is larger by a fator of 4, and the estimated derease of the erroris only like n�6:1. In ase of Wendland's funtion in Figure 4 the error fatoris only 1.4, while the estimated deay order is -1.72.
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NFigure 4: Wendland funtion, geometri greedy dataNote that for asymptotially uniformly distributed points we would theoret-ially get an arbitrarily high deay rate in ase of the Gaussian, while forWendland's funtion we expet a deay rate of?????. The C2 funtion has an hX;
 order of 32 ,i.e. kP�;XkL1(
) �Ch1:5X;
. Hene if hX;
 � N�1=2 we would expet an N order of �34for the non-squared ase. ????Though the geometri greedy algorithm an be proven to generate anasymptotially optimal sequene, its independene of the kernel makes itstill inferior to the greedy algorithm that takes maxima of the power fun-tion. However, so far there is no proof that the latter algorithm generates asequene with hn � Cn�1=d, as required for asymptoti optimality.Referenes[1℄ Beyer, A. Optimale Centerverteilung bei Interpolation mit radialenBasisfunktionen. Diplomarbeit, Universit�at G�ottingen, 1994.[2℄ Shabak, R. Error estimates and ondition numbers for radial ba-sis funtion interpolation. Advanes in Computational Mathematis 3(1995), 251{264.[3℄ Shabak, R. Multivariate interpolation and approximation by trans-lates of a basis funtion. In Approximation Theory VIII, C. K. Chui andL. Shumaker, Eds., vol. 1: Approximation and interpolation. WorldSienti� Publishing, 1995, pp. 491{514.15
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