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Abstract

This paper proves lower bounds for the eigenvalues of positive definite

matrices arising from interpolation of scattered data by positive definite

kernels. By comparison with upper bounds for the interpolation error,

it turns out that both bounds are asymptotically optimal for sufficiently

dense data sets. Applications include interpolation on the sphere, the

torus, and general Riemannian manifolds.

Keywords: Sobolev spaces, kernel expansions, n-sphere, n-torus, radial basis
functions.
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1 Introduction

Simplified preliminary copy of the introduction of our RiP paper

Let {ϕj(x)}j∈J be a complex–valued orthonormal basis of L2(Ω), where J
is a countable index set, Ω is a bounded domain in R

dim, or a compact n–
dimensional Riemannian manifold [7]; the n-sphere S

dim and the n-torus T
dim

are manifolds of special interest.
Expansions of functions f ∈ L2(Ω) with respect to {ϕj(x)}j∈J will be writ-

ten as
function

f =
∑

j∈J

f̂(j)ϕj , f̂(j) := (f, ϕj)2, (1)

The symbols c and C will stand for generic constants.
We shall study interpolation of functions f ∈ L2(Ω) by linear combinations

of functions Φ(·, y), where y ∈ Ω and Φ : L2(Ω) × L2(Ω) → R is a symmetric

positive definite kernel (see e.g. [7, 12, 13]) having an expansion
kernelphi

Φ(x, y) :=
∑

j∈J

Φ̂(j)ϕj(x)ϕj(y) (2)

with the coefficients Φ̂(j) being strictly positive. Such a framework may be
viewed as the natural analogue in Ω of RBF approximation on all of R

dim. The
smoothness of the kernel and the summability of the above series is usually
controlled by conditions on the decay of Φ̂(j) of the form

phidecay

c‖j‖−τ ≤ Φ̂(j) ≤ C‖j‖−τ (3)

for ‖j‖ → ∞, where ‖j‖ will be a norm on the index set. The precise inequalities
in (3) will be provided later in specific cases.

We call a kernel of the form (2,kernelphi) admissible, if the sequence
{Φ̂(j)}j∈J satisfies

∑

j

Φ̂(j)|ϕj(x)|2 ≤ C < ∞

for all x ∈ Ω. According to the overview given in [13], there are many admissible
kernels arising from positive integral operators

posintop

v 7→

∫

Ω

v(x)Φ(·, x)dx (4)

having {φj}j∈J as a complete orthonormal set of eigenfunctions with eigenvalues

Φ̂(j).
Any admissible kernel generates a Hilbert subspace
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sobolev

SΦ :=






f =

∑

j∈J

f̂(j)ϕj , ‖f‖2
Φ :=

∑

j∈J

|f̂(j)|2

Φ̂(j)
< ∞






, (5)

called the native space for Φ. There is a well-developed theory for interpolation
of functions f in the native space (see [7, 3, 4] for the torus and the sphere).

New text from here on...

Given a set X := {x1, . . . , xN} of N distinct points of Ω and real–valued
data y1, . . . , yN one can use functions of the form

eqapp

s(x) :=

N∑

j=1

αjΦ(x, xj) (6)

to solve the interpolation problem

s(xj) = yj , 1 ≤ j ≤ N.

This way of interpolation has various optimality properties among all other
linear recovery processes that reconstruct functions of the native space SΦ from
these data. In practice, it requires solving a linear system with the symmetric
matrix

AΦ,X := (Φ(xj , xk))1≤j,k≤N

whose condition necessarily must be bad when data points come close. How-
ever, the propagation of absolute errors from the data vector y ∈ R

N into the
coefficient vector α ∈ R

N of (6,eqapp) is not influenced by condition, but rather
by the smallest eigenvalue of AΦ,X via

‖α‖2 ≤ λ−1
min(AΦ,X)‖y‖2.

This follows from

AΦ,Xα = y
αT AΦ,Xα = αT Ay

λmin(AΦ,X)‖α‖2
2 ≤ αT Ay ≤ ‖α‖2‖y‖2,

and implies that upper bounds for the stability of the interpolation process with
respect to absolute errors are provided via lower bounds for λmin(AΦ,X). The
standard theory for such bounds in the case Ω = R

dim started with papers by
Ball, Narcowich, and Ward [1, 2, 8, 9, 10] with a generalization by Schaback in
[11]. The resulting bounds are of the form

Gbound

λmin(AΦ,X) ≥ GΦ(qX) (7)
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with the separation index

qX := min
1≤j<k≤N

‖xj − xk‖2

depending on the data locations only, while the function GΦ depends on Φ and
is independent of the data.

More precisely, the function GΦ is determined by smoothness properties of Φ.
In the translation–invariant case Φ(x, y) = φ(x − y) on R

dim, this is quantified
by the decay of the Fourier transform of φ in the form

φ̂(ω) = O(‖ω‖−dim−β
2 ) for ‖ω‖2 → ∞.

Then one can prove
GΦ(qX) ≥ cΦqβ

X

(see Table 2 in [11]), and the order β in this bound cannot be improved. More-
over, the function GΦ decays exponentially to zero whenever the Fourier trans-
form of φ decays exponentially at infinity. This is the theoretical background
for the bad numerical behavior of multiquadrics and Gaussians on dense data.

In this paper, we want to carry these results over to cases where the kernel
functions come from series expansions. The smoothness of the kernel will be
measured by a decay condition like (3,phidecay) with an exponent τ measuring
the smoothness, and the result will then be of the form

Grate

λmin(AΦ,X) ≥ GΦ(qX) ≥ cΦqτ−dim
X , (8)

where d is the dimension of Ω, and where the order τ − d cannot be improved.
The proof technique will be different from the previous literature, and it will
use a scale of kernels with small support, which are of interest themselves.

2 Optimality of Stability Orders

To assess the optimality of the exponent in (8,Grate), we need upper bounds for
the smallest eigenvalue of AΦ,X . Such bounds are provided by the uncertainty
relation of [11] together with upper bounds for the power function, which are
byproducts when proving error bounds for interpolation. We can omit most of
the background theory, if we look at standard error bounds for interpolants s
of the form (6,eqapp) to functions f from the native space (5,sobolev) on data
sets X using a kernel Φ. These bounds have the form

intbound

‖f − s‖2
∞,Ω ≤ FΦ(hX)‖f‖2

Φ, (9)

where hX stands for the fill distance

hX := sup
x∈Ω

min
xj∈X

‖x − xj‖2
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and where FΦ is a function that depends on the smoothness of Φ in the sense
of (3,phidecay). In particular,

betasimple

FΦ(h) = O(hτ−dim) for h ↓ 0 (10)

in case of a kernel Φ satisfying (3,phidecay), and where dim is the dimension
of Ω. Special instances of such results are in [5].

Now the uncertainty relation of [11] relates FΦ and GΦ by

GΦ(h) ≤ c1FΦ(c2h)

for h ↓ 0, and by comparison of (10,betasimple) and (8,Grate) we see that
both the error orders and the stability orders are optimal.

3 Lower Bounds for Eigenvalues

We introduce a new technique for proving bounds of the form (7,Gbound) via
a perturbation of Φ that does not spoil the positive definiteness of Φ while
modifying the matrix AΦ,X on the diagonal only.

Theorem 3.1 Assume that there is a not necessarily positive definite symmet-

ric and admissible kernel g such that

gcond

Φ̂(j) − ĝ(j) ≥ 0 for all j ∈ J
g(x, y) = 0 for all ‖x − y‖2 ≥ 2qX .

(11)

Then we have

λmin(AΦ,X) ≥ g(0).

Proof: The kernel Φ − g is positive semidefinite due to the first condition of
(11,gcond), and we get

0 ≤ λmin(AΦ−g,X) = λmin(AΦ,X − g(0)I) = λmin(AΦ,X) − g(0)

because the second condition of (11,gcond) makes the matrices differ only on
the diagonal. 2

It is an interesting problem to ask for a positive definite kernel g satisfying
(11,gcond) and maximizing g(0). We address this question in [6].

4 Lower Bounds for Convolutions

The following assumes that everything takes place in Rdim, but it generalizes
easily to sphere caps and the torus.
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Theorem 4.1 Let two nonnegative compactly supported functions g and h sat-

isfy

g(x) ≥ g0χBr(0)(x), h(x) ≥ h0χBs(0)(x)

for positive values g0, h0 and radii r, s of balls Br(0), Bs(0) around zero. Then

the convolution is nonnegative and satisfies

(g ∗ h)(x) ≥ g0h0 vol (Bt)χBt(0)(x)

for t = min(r, s)/2.

Proof: In fact, if the shift distance ‖x‖2 is at most t, then the ball Bt(x/2) is
contained in both Br(0) and the shifted ball Bs(x). This follows from

‖y‖2 ≤ ‖y − x/2‖2 + ‖x/2‖2 ≤ t + ‖x‖2/2 < 2t ≤ r
‖z − x‖2 ≤ ‖z − x/2‖2 + ‖x/2‖2 ≤ t + ‖x‖2/2 < 2t ≤ s

for y, z ∈ Bt(x/2). Then

(g ∗ h)(x) =

∫

g(y)h(x − y)dy ≥ g0h0

∫

Br(0)∩Bs(x)

dy ≥ g0h0 vol (Bt(x/2)).

2

We now use this lower bound for successive convolutions of g = χBǫ(0). We
get

(g ∗ g)(x) ≥ vol (Bǫ/2)χBǫ/2(0)(x)

(g ∗ g ∗ g)(x) ≥ vol (Bǫ/2) vol (Bǫ/4)χBǫ/4(0)(x)

( g ∗ . . . ∗ g
︸ ︷︷ ︸

m−1 times

)(x) ≥ χBǫ/2m−1 (0)(x)
∏m−1

j=1 vol (Bǫ/2j )

( g ∗ . . . ∗ g
︸ ︷︷ ︸

m−1 times

)(0) ≥ c(m, dim)ǫdim(m−1),

which is what we need later. This argument works likewise for the circle, the
torus, and caps of spheres.

5 The Circle Case

Our comparison function g for the circle will be constructed by convolution of the
2π–periodic continuation B1

ǫ of the characteristic function χ[−ǫ,ǫ] for 0 < ǫ < π.
We get the L2–convergent representation

B1
ǫ (x) =

ǫ

π
+

2ǫ

π

∞∑

n=1

sin nǫ

nǫ
cos(nx)
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and convolve B1
ǫ/m with itself m − 1 times. This yields

Bm
ǫ (x) := (B1

ǫ/m ∗ . . . ∗ B1
ǫ/m)(x)

=
( ǫ

π

)m

(2π)m−1 +

(
2ǫ

π

)m

πm−1
∞∑

n=1

(
sin nǫ

nǫ

)m

cosnx

=
1

2π
(2ǫ)m +

1

π
(2ǫ)m

∞∑

n=1

(
sinnǫ

nǫ

)m

cosnx,

where we remark that each convolution introduces a factor 2π and π in the first
and the remaining terms, respectively. If the given kernel has the form

cirker

Φ(x, y) :=
ρ0

2
+

∞∑

n=1

ρn cosn(x − y) (12)

with the property
rhobnd

ρn ≥ ρn−m for all n ≥ 0 (13)

with a fixed positive ρ, then Φ − cΦBm
ǫ is positive semidefinite for

cΦ = min
(
πρ2−m, πρ02

−mπ−m
)
.

In fact,

cΦ
1

2π
(2ǫ)m ≤ πρ02

−mπ−m 1

2π
(2ǫ)m ≤ πρ02

−mπ−m 1

2π
(2π)m ≤ ρ0/2,

cΦ
1

π
(2ǫ)m

(
sinnǫ

nǫ

)m

≤ πρ2−m 1

π
(2ǫ)m

(
1

nǫ

)m

≤ ρn−m ≤ ρn.

Thus we apply Theorem 3.1 for g := cΦBm
2qX

and we have to evaluate g(0) =
cΦBm

2qX
(0) or find a positive lower bound. Theorem 4.1 provides a lower bound

of order ǫm−1. We summarize:

Theorem 5.1 If a symmetric positive definite kernel Φ on the circle has the

smoothness order m defined in (13,rhobnd), then there is a positive constant γ
depending on Φ but not on the data, such that

λmin(AΦ,X) ≥ γqm−1
X

holds for sufficiently dense data sets X, and this order is best possible.
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6 The Sphere Case

The kernels considered here have the form
pdkernelsph

Φ(p, q) =

∞∑

ℓ=0

N(n,ℓ)
∑

k=1

Φ̂(ℓ, k)Yℓ,k(p)Yℓ,k(q), p, q ∈ S
dim, Φ̂(ℓ, k) > 0, (14)

where the Yℓ,k’s are spherical harmonics of order ℓ, and

N(dim, ℓ) =
2ℓ + dim − 1

ℓ

(
ℓ + dim − 2

ℓ − 1

)

= O(ℓdim−1) for ℓ ≥ 1.

The spherical harmonic Yℓ,k is an eigenfunction of the the Laplace-Beltrami
operator on S

dim corresponding to the eigenvalue λℓ = ℓ(ℓ+dim−1), ℓ ≥ 0. The

set {Yℓ,k}
N(ℓ,dim)
k=1 is chosen to be an an orthonormal basis for Eℓ, the eigenspace

of the Laplace-Beltrami operator on S
dim corresponding to the eigenvalue λℓ.

Collectively, the Yℓ,k’s form an orthonormal basis for L2(S
dim). We describe the

smoothness of Φ via
Φ̂(ℓ) ≥ cΦℓ−τ

for some τ > dim and ℓ → ∞, using

Φ̂(ℓ) := max
1≤k≤N(dim,ℓ)

Φ̂(ℓ, k).

and following (3,phidecay). For such kernels, we can cite (10,betasimple) from
[5] with slightly different notation.

We now want to come up with a scale of zonal kernels with small support. For
simplicity, let us consider the 2–sphere only. Zonality then means Φ̂(ℓ) = Φ̂(ℓ, k)
for all k, and N(2, ℓ) = 2ℓ + 1. Due to

YYp

ℓ∑

k=−ℓ

Yℓ,k(p)Yℓ,k(q) =
2ℓ + 1

4π
Pℓ(cosϕ) (15)

where ϕ is the angle between points p and q on the sphere, i.e. cosϕ = pT q, the
kernel can be rewritten as

Φ(p, q) =
1

4π

∞∑

ℓ=0

(2ℓ + 1)Φ̂(ℓ)Pℓ(cosϕ)

=

∞∑

ℓ=0

φ̂(ℓ)Pℓ(cosϕ)

φ̂(ℓ) =
2ℓ + 1

4π
Φ̂(ℓ).

Note that then (3,phidecay) turns into
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phidecnew

c‖j‖−τ+1 ≤ φ̂(j) ≤ C‖j‖−τ+1. (16)

We shall distinguish between the notations Φ̂ and φ̂ in the sequel. The latter
sense will be assumed for the function g to be constructed.

Our zonal kernel should have the form
gkernel

g(p, q) = g(cosϕ) =

∞∑

ℓ=0

ĝ(ℓ)Pℓ(cos ϕ), ϕ ∈ [0, π] (17)

where ϕ is the angle between points p and q on the sphere, i.e. cosϕ = pT q.
The transform can be recovered via classical Legendre polynomial theory as

recov

ĝ(ℓ) =
2ℓ + 1

2

∫ π

0

g(cosϕ)Pℓ(cosϕ) sin ϕdϕ

=
2ℓ + 1

2

∫ 1

−1

g(t)Pℓ(t)dt.
(18)

If we want g to be linear for angles smaller than ǫ > 0, then we get a function
g1

ǫ with

ĝ1
ǫ (ℓ) =

2ℓ + 1

2

∫ ǫ

0

Pℓ(cosϕ)

(

1 −
1 − cosϕ

1 − cos ǫ

)

sinϕdϕ

=
2ℓ + 1

2
aℓ(cos ǫ),

aℓ(x) :=

∫ 1

x

t − x

1 − x
Pℓ(t)dt.

Before we proceed further to evaluate the transform, let us look at convolution
G ∗ H of zonal functions

G(pT q) =
∞∑

ℓ=0

Ĝ(ℓ)Pℓ(p
T q)

H(pT q) =

∞∑

ℓ=0

Ĥ(ℓ)Pℓ(p
T q)

(G ∗ H)(pT r) :=

∫

S

G(pT q)H(qT r)dµ(r)

=

∞∑

ℓ=0

4π

2ℓ + 1
Ĝ(ℓ)Ĥ(ℓ)Pℓ(p

T r)

which follows from (15,YYp) and the orthonormality of the spherical harmonics.
We convolve g1

ǫ with itself m−1 times to get a new function gm
ǫ with transform

ĝm
ǫ (ℓ) =

(
2ℓ + 1

2

)m

am
ℓ (cos ǫ)

(
4π

2ℓ + 1

)m−1

= (2π)m−1 2ℓ + 1

2
am

ℓ (cos ǫ).
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We have to pick m in such a way that if Φ satisfies (16,phidecnew), then first
gl

ĝm
ǫ (ℓ) ≤ O(ℓ−τ+1) (19)

for ℓ → ∞ uniformly for small ǫ, and second

gm
ǫ (0) = (2π)m−1

∞∑

ℓ=0

2ℓ + 1

2
am

ℓ (cos ǫ) ≥ O(ǫτ−2)

to reach full optimality. To this end, we need more information on aℓ(cos ǫ).
We shall apply

Pℓ =
1

2ℓ + 1
(P ′

ℓ+1 − P ′
ℓ−1)

and

Pℓ(cos ǫ) =
2

π

∫ ǫ

0

cos(ℓ + 1/2)ϕ

(2(cosϕ − cos ǫ))1/2
dϕ.

We first do integration by parts on

aℓ(x) :=

∫ 1

x

t − x

1 − x
Pℓ(t)dt.

=
1

2ℓ + 1

∫ 1

x

t − x

1 − x
(P ′

ℓ+1(t) − P ′
ℓ−1(t))dt

=
1

2ℓ + 1

(
t − x

1 − x
(Pℓ+1(t) − Pℓ−1(t))

)∣
∣
∣
∣

1

x

−
1

(2ℓ + 1)(1 − x)

∫ 1

x

(Pℓ+1(t) − Pℓ−1(t))dt

= −
1

(2ℓ + 1)(1 − x)

(
1

2ℓ + 3
(Pℓ+2 − Pℓ)|

1
x −

1

2ℓ − 1
(Pℓ − Pℓ−2)|

1
x

)

(1 − x)aℓ(x) = −Pℓ+2(x)
1

(2ℓ + 1)(2ℓ + 3)

+2Pℓ(x)
1

(2ℓ − 1)(2ℓ + 3)

−Pℓ−2(x)
1

(2ℓ − 1)(2ℓ + 1)

for ℓ ≥ 3, caring about small ℓ later. We apply the Christoffel–Darboux formula

1

n + 1

n∑

ν=0

(2ν + 1)Pν(x) =
Pn(x) − Pn+1(x)

1 − x

twice to get

2n + 1

n + 1
Pn(x) +

2n + 1

n(n + 1)

n−1∑

ν=0

(2ν + 1)Pν(x) =
Pn−1(x) − Pn+1(x)

1 − x
.
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Inserting this int the formula for aℓ(x), we get

(2ℓ + 1)aℓ(x) =
1

2ℓ + 3

(

2ℓ + 3

ℓ + 2
Pℓ+1(x) +

2ℓ + 3

(ℓ + 1)(ℓ + 2)

ℓ∑

ν=0

(2ν + 1)Pν(x)

)

−
1

2ℓ − 1

(

2ℓ − 1

ℓ
Pℓ−1(x) +

2ℓ − 1

(ℓ − 1)ℓ

ℓ−2∑

ν=0

(2ν + 1)Pν(x)

)

=
1

ℓ + 2
Pℓ+1(x) +

1

(ℓ + 1)(ℓ + 2)

ℓ∑

ν=0

(2ν + 1)Pν(x)

−
1

ℓ
Pℓ−1(x) −

1

(ℓ − 1)ℓ

ℓ−2∑

ν=0

(2ν + 1)Pν(x)

=
1

ℓ + 2
Pℓ+1(x) +

2ℓ + 1

(ℓ + 1)(ℓ + 2)
Pℓ(x)

+

(
2ℓ − 1

(ℓ + 1)(ℓ + 2)
−

1

ℓ

)

Pℓ−1(x)

+

(
1

(ℓ + 1)(ℓ + 2)
−

1

(ℓ − 1)ℓ

) ℓ−2∑

ν=0

(2ν + 1)Pν(x)

=
1

ℓ + 2
Pℓ+1(x) +

2ℓ + 1

(ℓ + 1)(ℓ + 2)
Pℓ(x)

+
ℓ2 − 4ℓ − 2

ℓ(ℓ + 1)(ℓ + 2)
Pℓ−1(x)

−
2ℓ + 1

(ℓ − 1)ℓ(ℓ + 1)(ℓ + 2)

ℓ−2∑

ν=0

(2ν + 1)Pν(x)

and this yields a bound of the form

|aℓ(x)| ≤ C(ℓ + 1)−2

for all ℓ ≥ 0, where C is independent of x ∈ [−1, 1].
These asymptotics of aℓ(x) for ℓ → ∞ are sufficient to handle (3,phidecay)

with τ = 2m for general m. Theorem 4.1 provides a lower bound of order ǫ2m−2.
We summarize:

Theorem 6.1 If a symmetric positive definite kernel Φ on the 2–sphere has

the smoothness order τ = 2m defined in (3,phidecay), then there is a positive

constant γ depending on Φ but not on the data, such that

λmin(AΦ,X) ≥ γq2m−2
X

holds for sufficiently dense data sets X, and this order is best possible.

7 The Euclidean Case

We now apply our technique to the Euclidean case. There, optimality of the
orders of lower bounds for minimal eigenvalues and upper bounds for the power
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function are well known, see e.g. the summary in [11]. The methods of this
paper, however, are different and allow a considerably shorter proof in case of
algebraic decay of the Fourier transform.

We assume a conditionally positive definite translation–invariant kernel

Φ(x, y) = φ(x − y)

with an even function φ on R
dim whose generalized Fourier transform satisfies

φ̂(ω) ≥ c‖ω‖−dim−β

for positive c, β and for ‖ω‖2 ≥ 1. Then optimal error bounds have functions F
and G of the form hβ in the sense of section 2.

To prove such bounds with the techniques of this paper, we consider the
function

gm := χ1 ∗ . . . ∗ χ1
︸ ︷︷ ︸

m−1 times

where χ1 is the characteristic function of the unit ball in R
dim. It has Fourier

transform
χ̂1(ω) = ‖ω‖

−dim/2
2 Jdim/2(‖ω‖2)

with decay order −(dim + 1)/2 at infinity. If we convolve the function m − 1
times with itself and scale it in such a way that the support is proportional to
ǫ, we get a Fourier transform with behavior

‖ω‖
−m(dim+1)/2
2 ǫdim−m(dim+1)/2

at infinity and ǫdim at zero. This operation can be done for noninteger values
of

m =
2(dim + β)

dim + 1
.

to generate the same Fourier transform decay at infinity as of φ. Since the value
of this function at zero still is one, we find a lower bound for the eigenvalues of
the order

ǫ−dim+m(dim+1)/2 = β.

(must be polished...)
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