
On unsymmetri olloation by Radial BasisFuntionsY. C. Hon, City University of Hong Kong 1R. Shabak, University of G�ottingen 2Abstrat. Solving partial di�erential equations by olloation with radialbasis funtions an be eÆiently done by a tehnique �rst proposed by E. Kansain 1990. It rewrites the problem as a generalized interpolation problem, and thesolution is obtained by solving a (possibly large) linear system. The method hasbeen used suessfully in a variety of appliations, but a proof of nonsingularityof the linear system still was missing. This paper shows that a general proofof this fat is impossible. However, numerial evidene shows that ases ofsingularity are rare and have to be onstruted with quite some e�ort.1 IntrodutionA large variety of numerial tehniques an be formulated as generalized inter-polation problems on spaes of multivariate funtions. An easy speial ase isprovided by olloation methods. These use an N -dimensional spae S offuntions and N funtionals �1; : : : ; :::�N . The spae S is spanned by funtionsf1; : : : ; fN , and then one looks for a funtionf = NXj=1�jfj 2 Ssuh that the system �k(f) = NXj=1�j�k(fj); 1 � k � N (1)1Supported by City Univ. Strategi Researh Grant No. 70009432Visiting City Univ. of Hong Kong, sponsored by DFG1



is uniquely solvable for the oeÆients �1; : : : ; �N . Note that (1) desribes aplain interpolation problem, if the funtionals �1; : : : ; :::�N are point evaluationsÆx1 ; : : : ; :::ÆxN . This is why (1) an be viewed as a generalized interpolationproblem.This approah needs that the system (1)with the oeÆient matrixA := (�k(fj))1�j;k�Nis nonsingular. This paper onentrates on the question of singularity of suhmatries in the speial ase of spaes spanned by radial basis funtions.In fat, radial basis funtions of the form�(kx� yk2) x; y 2 IRd; � : IR! IR�0provide an easy and e�etive approah to spaes of multivariate funtions. Forsattered \enters" x1; : : : ; xN one an form the spaeS := span f�(k � �xjk2) 1 � j � Ngand use this spae in the above setting. If the data funtionals are the point eval-uation funtionals Æx1 ; : : : ; :::ÆxN , the problem is a pure interpolation problemand the matrix A is symmetri with entries �(kxi � xjk2).However, even in this simple situation it may happen that the matrix is singular.This ours, for instane, in ase of Hardy's multiquadris �(r) := pr2 + 2 andfor thin{plate splines �(r) := r2 log r:One has to add a spae IP dm of d{variate polynomials of order (=degree-1) atmost m and to kill the additional q := dimIP dm degrees of freedom by theadditional requirement NXj=1�jp(xj) = 0 for all p 2 IP dm (2)for the solution of the system (1). If m is hosen large enough (m � 1 formultiquadris, m � 2 for thin{plate splines), the resulting augmented systemwill be nonsingular. We refer te reader to standard literature on radial basisfuntions for a deeper understanding of these fats.2 Kansa's TehniqueA speial but important ase ours for olloation for the inhomogeneousDirihlet problem on a bounded domain 
 � IR2, using multiquadris. Wehave m � 1 and split the funtionals �1; : : : ; �N in two parts:2



� Lagrange data funtionals Æx1 ; : : : ; ÆxM for points on the boundary of thedomain 
,� Laplae data funtionals �xM+1 = ÆxM+1�; : : : ;�xN = ÆxN� for pointsin the losure of the domain.Colloation is done with the span of the funtions �(k ��xjk2); 1 � j � N plusthe funtions in IP dm. The additional ondition (2) is imposed.The method was �rst introdued by Ed Kansa [12, 13℄ and used suessfully(and for more general settings) by several other authors, e.g. [1, 2, 3, 14℄.Hon et al. further extended the use of the MQ-RBFs on the numerial so-lutions of various ordinary and partial di�erential equations inluding generalinitial value problems [9℄, nonlinear Burgers' equation with shok wave [10℄,surfae wind �eld omputation from sattered data [5℄, ompliated biphasiand triphasi models of mixtures [7℄[8℄, shallow water equation for tide and ur-rents simulation under irregular boundary [6℄, and free boundary problems likeAmerian option priing [11℄. The omputations showed the de�nite advantagesin using this truly mesh-free MQ-RBFs for solving various initial and boundaryvalues problems.The orresponding (N+q)�(N+q) matrix was always found to be nonsingular,but there was no proof of this fat. In this paper, we onstrut ounterexamples,but the onstrution shows that ounterexamples are rare birds indeed.In the above tehnique, the funtionals Æx1 ; : : : ; ÆxN generating the spaeS := spannÆtxj�(k � �tk2) 1 � j � Noare di�erent from the olloation funtionals �1; : : : ; �N , making the olloationmatrix unsymmetri. Here, we used the supersript t to denote ation of afuntional with respet to the variable t. If one uses the olloation funtionals�1; : : : ; �N to generate the spaeS := span��tj�(k � �tk2) 1 � j � N	 ;a symmetri olloation tehnique �rst proposed by Wu [16℄ results, and undermild assumptions on � and the funtionals �1; : : : ; �N the symmetri olloationmatrix with entries �sj�tk�(ks � tk2) is positive de�nite. However, symmetriolloation needs stronger regularity assumptions and usually provides inferiornumerial results (see e.g. Fasshauer [4℄). This is why Kansa's unsymmetriolloation is to be preferred. 3



3 Theoretial Basis for CounterexamplesTo be not too far away from any appliation, we took the Poisson equation onthe square 
 = [�1;+1℄2 and �xed M = 8 Lagrange data points equidistantlyon the boundary (orners and mid{edges). Another 9 points for olloationof Laplaian values were plaed inside the square, and we vary these 9 pointslater. Sine appliations have onentrated on multiquadris, these were usedhere, too. Sine they require m = 1, we added a onstant funtion and asingle additional ondition (2) on the oeÆients of the atual 17 radial basisfuntions. This is the minimum requirement to make the pure interpolationproblem nonsingular. Altogether, we thus have an 18� 18 matrix A(Y ), whoseentries are smooth funtions of the elements of the Laplaian enter set Y =fx9; : : : ; x17g � [�1;+1℄18.We arried out similar alulations for other radial basis funtions, and thereforewe desribe the tehnique in somewhat more general terms. However, we usedthe same geometri setting in all ases. The determinant D(Y ) := detA(Y ) is asmooth funtion on [�1;+1℄18, and for a ounterexample it suÆes to �nd twonumerially nondegenerate ases Y1; Y2 2 [�1;+1℄18 with D(Y1) � D(Y2) < 0.We an then onlude that on any ontinuous path in [�1;+1℄18, joining Y1 andY2, the determinant must vanish at least one. But there are lots of suh pathsthat avoid oalesing points, and eah path gives at least one ounterexamplewith nonoalesing points and zero determinant.To �nd two numerially nondegenerate ases Y1; Y2 2 [�1;+1℄18 with D(Y1) �D(Y2) < 0, we ran a large number of evaluations of D(Y ), eah with a randomhoie of Y . It turns out that sign hanges of the determinant are very rare,and one just has to look for a single ase with the \wrong" sign of the determi-nant. We disarded examples where two of the 9 randomly hosen points withLaplaian data had a distane less than 0.1, beause there are trivial zeros ofthe determinant whenever two points oalese, and we do not want ases withvery small determinants in absolute value. Cases with a large ondition numberin relation to the absolute value of the determinant were disarded, too, beausethey do not provide safe examples. More preisely, we insisted on the onditionond (A(Y ))=j det(A(Y ))j < 1010when doing everything in 64{bit double preision. However, it suÆes to verifya posteriori that the �nal exeptional example really has the \wrong" sign ofdeterminant, even with roundo� taken into onsideration.4 Numerial ResultsAfter 7846 samples for multiquadris with  = 0:5 we found an exeptionalon�guration with the following Laplae points:4



8.273563011676801e-01 1.802418079135202e-012.394614691098507e-01 -3.252848579200380e-019.794477615409753e-01 -9.277954753152073e-01-9.372443072205616e-01 -2.431062149084667e-018.888265033666167e-01 -5.002654378769293e-011.633663452991128e-01 4.030965172700103e-01-9.984683087088486e-01 5.822021935983579e-02-7.520452098697639e-02 -3.715893613973583e-013.489601022326201e-01 1.330205365703536e-01A plot of these points is in Figure 1. This ase has determinant -1.265 andondition 23764.4, while the preeding sample (for instane) had determinant46.2. To make sure that there is no serious loss of auray, we alulated theapproximate inverse of A(Y ) and found the norm of the residual to be 6.5e-13. Further evidene was provided by looking at the full Gaussian eliminationproess: the pivots were reasonable in all elimination steps. By our ontinuityargument, this example shows that a general proof of nonsingularity of theunsymmetri ollation matrix is impossible.
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-1 -0.5 0 0.5 1Figure 1: Points leading to \wrong" sign of determinant. Here, the + marksstand for the Lagrange points on the boundary, the x marks are the randomLaplae olloation points in the interior, while the * mark is the Laplae ollo-ation point that we later moved around to produe the plot of the determinantfollowing in the next �gure.If the most entral point y is moved around, the determinant d(y) := D(Y (y))produes a funtion on [�1;+1℄2, plotted in Figure 2.5
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5Figure 2: Determinant as funtion of single pointThere is a well{de�ned zero ontour line, and by a sequene of numerial ex-amples (minimization of the absolute value of the determinant on loally re-�ned grids) we �nally got a strongly degenerate ase with a determinant of8.212515803804915e-11, where the *{marked point of Figure 1 has moved to theplae (x; y) = (-4.500777547787466e-01,5.271590048254461e-01) in Figure3.
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-1 -0.5 0 0.5 1Figure 3: Degenerate pointsThe points are still well{separated, but the ondition 6.04e+14 is extremely badand the determinant -8.4e-11 is extremely small. However, the row{sum normof the residual matrix still is 1.425951247620105e-02, proving that this ase isat the very edge of omputability with 64 bit double preision oating pointnumbers.In ase of polynomial degree 1 we have to work wit a 20 � 20 matrix. It nowtakes 292372 samples to get a determinant of -0.125 against 1723.0 in the pre-6



vious sample, and with ondition 2.18e+5. The points are in Figure 4, and theorresponding determinant plot is Figure 5.
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-1 -0.5 0 0.5 1Figure 4: Multiquadris ounterexample with linear polynomials added
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1.2Figure 5: Determinant plot of multiquadris ounterexample with linear poly-nomials addedThe tehnique also works for Gaussians with no polynomials added, and it tookjust 390 samples. The matries now are 17 � 17. The points of the ase with\wrong" sign of determinant are in Figure 6, and the orresponding determinantplot is Figure 7.We arried out many test runs with Wendland's C2 funtion �(r) = (1�r)4+(1+4r) at various sales (i.e. using �(r=) for di�erent  to have support radius ).7
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0.0015Figure 7: Determinant plot of Gaussian ounterexampleFor suÆiently small  in relation to the minimal distane of data points, thesefuntions will generate diagonal olloation matries with nonzero entries onthe diagonal. But these nondegenerate ases have large disretization errorsand are thus pratially useless. For this reason we tested ases with large only, but no ounterexamples were found so far. However, we do not believethat these ompatly supported radial basis funtions from [15℄ always generatenonsingular matries.5 ConlusionWe have shown that there annot be a general proof of nonsingularity of matriesarising from unsymmetri olloation with radial basis funtions. Sine nonsin-gularity was observed in all pratially relevant ases, theoretial investigationsan now proeed to prove nonsingularity in restrited situations.8



For appliations, unsymmetri olloation still is preferable over symmetri ol-loation due to its superior performane. The pure existene of singular ases isno serious objetion to a valuable numerial tehnique. For example, numerialanalysts still solve linear systems of equations even though they an be singularin ertain ases. There are reliable tehniques to detet near{singularity of ma-tries, and if these tehniques are inorporated into running ode, appliationsare safeguarded.Referenes[1℄ Dubal, M.R., Constrution of three-dimensional blak-hole initial data viamultiquadris, Phys. REv. D. 45 (1992), 1178{1187.[2℄ Dubal, M.R., Domain deomposition and loal re�nement for multiquadriapproximations. I: Seond-order equations in one-dimension, J. Appl. Si.Comp. 1 (1994), 146-171.[3℄ Golberg, M.A. and C.S. Chen, Improved multiquadri approximation forpartial di�erential equations, Engr. Anal. with Bound. Elem. 18 (1996),9{17.[4℄ Fasshauer, G., Solving partial di�erential equations by olloation withradial basis funtions, in: Surfae Fitting and Multiresolution Methods,A. LeM�ehaut�e, C. Rabut, and L.L Shumaker, eds., Vanderbilt UniversityPress, Nashville, 1997, 131{138.[5℄ Hikernell, F.J. and Y.C. Hon, Radial basis funtion approximation of thesurfae wind �eld from sattered data, Appl. Si. Comput. 4 (1998), 221{247.[6℄ Hon, Y.C., K.F. Cheung, X.Z. Mao, and E.J. Kansa, A multiquadri solu-tion for shallow water equation, ASCE Journal of Hydrauli Engineering,May 1999, to appear.[7℄ Hon, Y.C., M.W. Lu, W.M. Xue, and Y.M. Zhu, Multiquadri methodfor the numerial solution of a biphasi model, Appl. Math. Comput. 88(1997), 153{175.[8℄ Hon, Y.C., M.W. Lu, W.M. Xue, and X. Zhou, A new formulation andomputation of the triphasi model for mehano-eletrohemial mixtures,to appear at the Journal of Computational Mehanis, 1999.[9℄ Hon, Y.C. and X.Z. Mao, A multiquadri interpolation method for solvinginitial value problems, Si. Comput. 12/1 (1997), 51{55.[10℄ Hon, Y.C. and X.Z.Mao, An eÆient numerial sheme for Burgers' equa-tion, Appl. Math. Comput. 95 (1988), 37{50.9
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