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Abstract

We survey some recent developments of the application of compactly supported radial
basis functions (CS-RBFs) in the context of the dual reciprocity method. Using the CS-
RBFs as the main tool for approximating the right hand side of a given partial differential
equation, we further introduce a number of numerical techniques so that a large class of
partial differential equations can be solved numerically. Due to the virture of compact
support, the CS-RBFs are very promising for solving large scale and high dimensional
problems. In this survey paper, we summarize a collection of closed-form particular
solutions for various differential operators. In particular, some of them are new and
preliminary numerical results are also provided in this paper. We also point out a few
minor errors in previous publications on CS-RBFs and offer the necessary corrections. A
number of proposals for future research using CS-RBFs are also suggested.

1 Introduction

In the numerical solution of partial differential equations (PDEs), finite difference and
finite element methods (FDM, FEM) are well established techniques for solving various
science and engineering problems. Despite their many attractive features for solving
PDEs, the FDM usually involves a rectangular grid system, which makes it very difficult
to model irregular domains. Although the FEM is more flexible for generating a grid
network, it is still a non-trivial task for complicated domains. The domain discretization
is often the most time consuming part of the solution process and is far from being
fully automated, particularly in 3D. One method to alleviate this difficulty is to use the
boundary element method (BEM), which requires only boundary discretization rather
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than the domain discretization as mentioned above. In this respect, the efficiency of
the BEM is significantly improved over its counterpart FDM and FEM. However, every
improvement of a numerical method always comes with other drawbacks of its own. The
reduction of the domain discretization to the boundary comes with some price. One
of the disadvantages of employing the BEM is that the fundamental solution of the
given differential operator is required. This, in principle, means only homogeneous linear
differential equations can be solved by the BEM. There are various ways to extend the
applicability of the BEM to other types of partial differential equations. As a result, a
nonhomogeneous term will somehow present in the right hand side of the reformulated
differential equation. The BEM losses its attractiveness when the differential equation is
nonhomogeneous due to the fact that domain discretization and domain integration are
required.

During the past two decades, much effort has been devoted to dealing with this
issue in the BEM community. One of the most widely used methods to transfer domain
integrals to the boundary is the dual reciprocity method (DRM) introduced by Nardini
and Brebbia [40] in 1982. During the past decade, the application of the DRM in the BEM
literature has grown at a rapid pace due in large part to its unique ability to alleviate
domain integration when the nonhomogeneous term is involved. The success of the DRM
largely depends on how accurately the nonhomogeneous term can be approximated. The
early development of the DRM during the period of 1982-1990 was summarized in the
book of Partridge et al. [41] where the ad-hoc basis function 1 + r was exclusively
employed for the approximation of the nonhomogeneous term. The theory of radial basis
functions (RBFs) was later introduced mainly by Golberg and Chen [19] to replace 1+ r
in which it was recognized that 1+r is just a special type of RBF. Since then many of the
important papers in the DRM literature have focused on the investigation of the effect
of choosing different RBFs [7, 39]. The theoretical development [23] of the DRM using
RBFs has put the DRM on a firm mathematical foundation. The follow-up numerical
results have confirmed that a good choice of RBFs improves the accuracy and efficiency
of the DRM. Consequently, the DRM has been recognized and widely accepted as a
reliable numerical method in transferring the domain integral to the boundary in the
BEM community.

Another important advance of the DRM was the discovery of closed-form particular
solutions for Helmholtz-type operators using RBFs [7, 39]. As we shall see later, so far
the task has only been possible by choosing polyharmonic splines or compactly supported
RBFs (in 3D) as basis functions. This immediately opens a new research direction for
more effectively solving time-dependent problems since most of these types of problems
can be reduced to solving a sequence of Helmholtz-type equations via Laplace transform
or finite difference schemes [8, 22]. This new development gives strong indication that
RBFs provide a rich and flexible class of basis functions that can be implemented so
that the derivation of close-form particular solutions for various differential operators is
possible. In the past, in the BEM literature the DRM was only applied to the case when
the dominant differential operator was kept as the Laplace or bi-harmonic operators.
This was primarily due to the difficulty in obtaining close-form particular solutions for
other differential operators. As a result, the DRM is less effective when the right hand
side becomes too complicated. In general, it is preferable to keep the right-hand side as
simple as possible so that it can be better approximated by the chosen RBFs.

Despite the many special attractive features of RBFs, it is known that most of the
RBFs are globally defined basis functions. This means that the resulting matrix for in-
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terpolation is dense and can be highly ill-conditioned, especially for a large number of
interpolation points in 3D. This poses serious stability problems and high computational
cost. Even though domain decomposition offers a remedy for ill-conditioned problems,
it requires domain discretization which is a major disadvantage in using the BEM. All
of these drawbacks lead us to search for basis functions that have local support. Due to
the effort of Schaback and his research group [43, 48, 49], compactly supported positive-
definite radial basis functions (CS-RBFs) have been explicitly constructed and applied to
multivariate surface reconstruction in mid-1990s. They provide a state-of-the-art interpo-
lation technique and have a firm theoretical basis for large scale interpolation problems.
It turns out that the most popular CS-RBFs were the ones constructed by Wendlend
[48]. Recently, Buhmann [4] has investigated a new, larger class of smooth radial basis
functions of compact support which contains other compactly supported ones that were
proposed by Wu [49] and Wendland [48]. Due to the virture of compact support, the
implementation of the CS-RBFs leads to a sparse matrix formulation in the approxi-
mation of a multivariate function or scattered data. Chen et al [9, 11] implemented
Wendlend’s CS-RBFs [48] in the context of the DRM for solving Poisson’s equation in
2D and 3D and later extended it to Helmholtz-type operators in 3D. Fasshauer [15] also
implemented these newly constructed CS-RBFs in the context of a Hermite collocation
method for solving various kinds of PDEs.

Initially, these new classes of CS-RBFs were considered as a cure for the problems of
the dense and ill-conditioned matrices mentioned above. However, several difficulties of
the CS-RBFs have been observed: (i) the accuracy and efficiency depends on the scale
of the support and determining the scale of support is uncertain. (ii) the convergence
rate of CS-RBFs is low. In order to obtain a sparse matrix system, the support needs
to be small; then the interpolation error become unacceptable. When the support is
large enough to make the error acceptable, the matrix system becomes dense and the
advantages to the traditional RBFs are lost. As a result, the use of CS-RBFs with a fixed
support is not recommended [15]. A multilevel scheme for CS-RBFs was first suggested
in the review paper of Schaback [43] and later was fully implemented by Floater and Iske
[17] to handle the uncertainty in choosing the size of the support. Based on the multilevel
scheme, Fasshauer [15, 16] and Chen et. al [10] also employed multilevel CS-RBFs for
solving PDEs.

In this paper we survey recent developments since 1995 of CS-RBFs in the context of
the DRM. In Section 2, we briefly introduce the classical RBFs and newly constructed CS-
RBFs for scattered data or function interpolation. In Section 3, we employ the method
of particular solutions to split the given linear partial differential equation into two parts:
homogeneous and nonhomogeneous equations. In Section 4, we introduce the method
of fundamental solutions, which requires neither domain nor boundary discretization, to
solve the homogeneous equation. In Section 5, we employ the DRM with CS-RBFs as
basis functions to approximate the particular solutions. In Section 6, we give a series
of known closed-form particular solutions for commonly used differential operators and
suggest a new way of deriving analytic particular solutions. In Section 7, a multilevel
scheme is introduced to alleviate the difficulty of choosing the scale of support. In
Section 8, we discuss iterative methods which do not require the assembling of a matrix.
In Section 9, further numerical examples using CS-RBFs have been tested and compared
to some other globally supported RBFs. We also found that CS-RBFs are more effective
than globally defined RBFs in approximating functions with sharp spikes. In Section 10,
methods developed in the previous sections are shown to be ready for implementation for
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solving more complicated time-dependent problems which can be achieved by reducing
these problems to a series of modified Helmholtz equations using the Laplace transform
or time marching schemes. In Section 11, we conclude this article by suggesting a number
of topics for future research.

2 Radial Basis Functions

Finite element techniques reconstruct functions from a superpositions of piecewise poly-
nomial functions on subsets of triangulations of a domain or its boundary. In contrast to
this, the techniques surveyed here will avoid triangulations and meshing, but they still
reconstruct functions by the superposition of simple functions. These simple functions
are shifts of radial basis functions (RBFs)

ψ(‖x‖2), ψ : [0,∞) → IR (1)

or derivatives thereof. Table 1 provides a selection of cases that can be used without
any restrictions. The functions are positive definite (PD) for all space dimensions. In

Gaussian ψ(r) = e−cr
2

c > 0

Inverse Multiquadrics ψ(r) = (r2 + c2)β/2 c > 0 > β
Sobolev splines ψ(r) = Kν(r)r

ν ν > 0
Kν = spherical Bessel function

Table 1: PD RBFs

certain cases, polynomials up to some small degree m − 1 have to be added to ensure
a safe reconstruction. More precisely, the functions in question have to be conditionally
positive definite (CPD) of some order m, which is zero in the cases of Table 1. Details
can be found in [50] or any survey on radial basis functions. We list such functions in
Table 2, providing the minimal order m. Note that in these cases the user has to add
all polynomials of degree up to m − 1 to ensure a safe reconstruction. The situation

Linear ψ(r) = r m = 1
Cubic ψ(r) = r3 m = 2
Polyharmonic splines ψ(r) = rβ β ∈ IR>0\2ZZ m ≥ ⌈β/2⌉
Thin–plate splines ψ(r) = rβ log r β ∈ 2IN m > β/2

Multiquadrics ψ(r) = (r2 + c2)β/2 β ∈ IR>0\2ZZ, c > 0 m ≥ ⌈β/2⌉

Table 2: CPD RBFs

is slightly different for radial basis functions with compact support. In these cases, the
order m of positive definiteness is always zero (thus there are no additional polynomials
required), but their positive definiteness depends on the space dimension d. In Table 3
we list the compactly supported (unconditionally) positive definite piecewise polynomial
radial basis functions (CS-RBFs) of Wendland [48], having minimal degree for prescribed
smoothness and space dimension. In Table 3 we have used the cut-off function (r)+ which
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d = 1 ψ(r) = (1 − r)+ C0

ψ(r) = (1 − r)
3
+ (3r + 1) C2

ψ(r) = (1 − r)
5
+

(

8r2 + 5r + 1
)

C4

d = 2, 3 ψ1(r) = (1 − r)2+ C0

ψ2(r) = (1 − r)4+ (4r + 1) C2

ψ3(r) = (1 − r)
6
+

(

35r2 + 18r + 3
)

C4

ψ4(r) = (1 − r)
8
+

(

32r3 + 25r2 + 8r + 1
)

C6

Table 3: Wendland’s CS-RBFs.

is defined to be r if 0 ≤ r ≤ 1 and to be zero elsewhere. Furthermore, two examples of
the new class of CS-RBFs constructed by Buhmann [4] are also given as follows:

ψ(r) = 2r4 log r − 7

2
r4 +

16

3
r3 − 2r2 +

1

6
, 0 ≤ r ≤ 1,

ψ(r) =
112

45
r9/2 +

16

3
r7/2 − 7r4 − 14

15
r2 +

1

9
, 0 ≤ r ≤ 1,

and φ (r) = 0 for r ≥ 1.
For practical implementation, one needs to rescale the support of ψ in (1). This can

be achieved by using instead the scaled function

ψ[α](r) = ψ(r/α) (2)

for various values of α > 0. For a given xi ∈ Ω, one defines the scaled CS-RBF ψi on Ω
as

ψ
[α]
i (x) = ψ[α] (‖x− xi‖) x ∈ Ω.

For the details of the scaling effect, in data fitting, we refer readers to the References
[17, 43].

3 The Method of Particular Solutions

First we consider solving the following types of differential equation,

Lu(x) = f(x), x ∈ Ω, (3)

u(x) = g1(x), x ∈ Γ1, (4)

∂

∂n
u(x) = g2(x), x ∈ Γ2. (5)

where L represents a second order elliptic differential operator with a known fundamental
solution, Ω ⊂ IRd, d = 2, 3, is a bounded open nonempty domain with sufficiently regular
boundary ∂Ω = Γ1 ∪ Γ2, Γ1 ∩ Γ2 = ∅.

It is well-known that the nonhomogeneous term in (3) can be eliminated by the use
of a particular solution. Let
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u = uh + up (6)

where up satisfies the nonhomogeneous equation

Lup(x) = f(x) (7)

but does not necessarily satisfy the boundary conditions (4)-(5) and uh satisfies

Luh(x) = 0, x ∈ Ω, (8)

uh(x) = g1(x) − up(x), x ∈ Γ1, (9)

∂

∂n
uh(x) = g2(x) −

∂up
∂n

, x ∈ Γ2. (10)

Once up and ∂up/∂n are known, equations (8)-(10) can be solved by a standard BEM.
In the next section, the method of fundamental solutions will be introduced to solve
(8)-(10). The final solution of (3)-(5) is then given by u = uh + up. The key issue is how
to determine the particular solution up and its normal derivative.

If f(x) in (7) is simple, up may be determined analytically. For general f(x), there
are various ways for evaluating particular solutions numerically [2, 18]. After the next
section we will focus on how particular solutions can be derived in the context of the
DRM using CS-RBFs for various differential operators that are commonly used in the
engineering literature.

4 The Method of Fundamental Solutions

Let us assume that the particular solutions, which will be the focus of the next few
sections, in (7) have been obtained in some ways. Various boundary methods can be
used to approximate the homogeneous solution in (8) - (10). Boundary element methods
have been under strong development during the past two decades and are considered
as one of the well established numerical techniques for solving PDEs in the areas of
science and engineering. However, the BEM also experiences several difficulties in its
numerical implementation. The task of surface discretization in 3D is still not trivial
and the need to compute tedious near-singular, singular and hyper-singular integrals is
tremendous. Moreover, the order of convergence of the BEM is low due to the use of low
order polynomial approximations. In recent years, the method of fundamental solutions
(MFS) has gained much attention as a boundary-only meshless method. It was originally
formulated by Kupradze and Aleksidze [36] and has been further developed by numerous
mathematicians and scientists over the past three decades. In the MFS, the singularities
are avoided by the use of a fictitious boundary outside the problem domain. The MFS
has similar features as the BEM: the need for a fundamental solution and the boundary
only formulation . In general, the MFS has the following advantages over its counterpart
BEM:

(i) It requires neither domain nor boundary discretization.

(ii) No domain integration of any type is required.

(iii) It converges exponentially for smooth boundary shapes and boundary data.
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Figure 1: The source points on the fictitious boundary.

(iv) It is insensitive to the dimensionality of the problem and thus is very attractive for
high dimensional problems.

(v) It is easy for practical implementation and coding.

The MFS is also known as the superposition method [35], desingularized method [5],
the charge simulation method [1], or regular BEM in the mathematical and engineering
literature. More details about the MFS can be found in two excellent review papers by
Fairweather and Karageorghis [14] and Golberg and Chen [21].

Despite the above attractive features, the MFS, however, has never been seriously
considered as a major numerical technique in the past partially due to its limitation
for solving only homogeneous problems. A key factor that the MFS has gradually
revived after three decades of dormancy is that it has been successfully extended to
nonhomogeneous problems and various types of time-dependent problems [21, 41] by
using the method of particular solutions as discussed in the last section. Most of the
important theoretical development of the MFS is also of recent origin [3, 13, 29, 30, 31,
32, 33, 34] and the robustness of the method is greatly enhanced. We refer readers to
the review paper by Golberg and Chen [21] for further details on its convergence and
stability. Hence, we focus only on the implementation of the MFS in this section.

For convenience, we replace the functions on the right hand sides of (9)-(10) by g̃1 and
g̃2 respectively. In the implementation of the MFS, we assume the approximate solution
ũh to the solution of equations (8) - (10) can be expressed as a linear combination of
fundamental solutions

ũh(x) =

n
∑

j=1

ajG(x, yj), x ∈ Ω̄, (11)

whereG(x, yj) is the fundamental solution of the linear operator L. Here the singularities,
or source points, {yj}n1 are placed outside the problem domain as shown in Figure 1.
Notice that ũh in (11) automatically satisfies the given differential equation (8). All we
need to do is to enforce ũh so that it satisfies the boundary conditions (9) - (10). By the
collocation method, we choose the same number of collocation points as source points on
the physical boundary. In general, we need to add a constant in (11) in the 2D case for
completeness purposes [3]. In the real implementation, most of the time we obtained the
same solution without adding the extra constant. Hence, we often do not add this extra
constant just for convenience in numerical computation. However, we want the readers
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to be be aware of the existence of such a constant. Let {xi}n1+1
1 ∈ Γ1 and {xi}n+1

n1+2 ∈ Γ2,
then we have

n1
∑

j=1

ajG(xi, yj) + an1+1 = g̃1(xi), 1 ≤ xi ≤ n1 + 1, (12)

n
∑

j=n1+1

aj
∂

∂n
G(xi, yj) = g̃2(xi), n1 + 2 ≤ x ≤ n+ 1. (13)

The above (n+1)× (n+1) system of equations can be solved directly by Gaussian elim-

ination. Once all the coefficients {aj}n+1
1 are determined, the approximate solution ũh

and its derivative ∂ũh/∂n can be evaluated from (11). As one may have noticed, neither
boundary discretization nor boundary integration is required due to the formulation of
the MFS in (11). Furthermore, when the boundary geometry, g̃1 and g̃2 are smooth, ũh
often converges exponentially to uh. As a result, we need only a small number of the
collocation points on the physical boundary and fictitious boundary. The given homoge-
neous equation can be solved much more efficiently than its counterpart BEM. So far as
the implementation is concerned, it is straightforward.

Another special feature of the MFS is that by construction, the MFS provides a
smooth extension of the solution of the boundary value problem to the exterior of the
physical solution domain, even though such an extension may not have a direct physical
interpretation. This property is particularly useful when using time-stepping methods
for solving time-dependent problems. Due to this property, the accuracy of the MFS
does not deteriorate near the boundary as is common in the BEM [20].

Although the MFS is very easy to set up and program as shown above, there are
several practical and theoretical issues need to be considered. Two of the most important
issues are the choice of the source points {yj}n1 and collocation points {xj}n+1

1 . In general,
there have been two approaches to choosing {yj}n1 - fixed and adaptive.

In a fixed method {xj}n+1
1 are chosen a priori in some fashion. Much of the work

in this direction has relied on the approximation results of Bogomolny [3] and Cheng’s
convergence results for the Dirichlet problem for Laplace’s equation when Ω and the
fictitious boundary are concentric circles [13]. In this work it was shown that the accuracy
of the approximation improves as the fictitious boundary is moved farther away from ∂Ω.
Cheng’s result was generalized by Katsurada and Okamoto [29, 30, 31, 32] who showed
that if ∂Ω is a closed Jordan curve in the plane and data are analytic, then

‖uh − ũh‖∞ ≤ c(r/R)n

where r and R are the diameters of D and the fictitious boundary respectively. As a
consequence, we found that choosing the source points {yj}n1 equally spaced around a
circle of radius R in IR2 and equally spaced in polar co-ordinates (φ, θ) on a sphere of
radius R in IR3 provided excellent results. In practical cases, because the MFS equations
(12) - (13) become highly ill-conditioned as R increases, we have generally limited R to
about 5 ∼ 10 times the diameter of Ω. Another interesting fact is that despite the ill-
conditioning, the accuracy of the numerical solutions is largely unaffected. It is believed
that this phenomena can be explained by investigating the singular value decomposition
(SVD) of the coefficient matrix of (12) - (13). This work is still under investigation and
will be reported in our future work.
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In adaptive methods, the coefficients {aj}n1 and source points {yj}m1 are determined by
satisfying the boundary conditions at m > n boundary points in the least squares sense.
This problem is nonlinear in the coordinates of the {yj}m1 but linear in the coefficients
{aj}n1 and can be time consuming to solve [14]. This approach was first proposed by
Mathon and Johnson [38] and further developed by Fairweather and his co-workers and
extended to a wide variety of problems; see [14, 26, 27, 28] and references cited therein.
However there is little or no theoretical basis for this approach. For convenience, we
implement the fixed method for the numerical solution of the homogenous equation in
the rest of this paper.

The following fundamental solutions will be frequently used in the following sections.
Let r = ‖x− y‖.

For L = ∆,

G(x, y) =











1

2π
log (r) , (x, y) ∈ IR2,

1

4πr
, (x, y) ∈ IR3,

For L = ∆ − λ2,

G(x, y;λ) =











1

2π
K0 (λr) , (x, y) ∈ IR2,

1

4πr
exp (−λr) , (x, y) ∈ IR3,

where K0 is the Bessel function of the third kind with order zero.

Example 1 To show how the number and location of collocation points and fictitious
points affect the final solution in the MFS, we examine a 3D example of the following
Laplace equation

∆u = 0, (x, y, z) ∈ Ω,

u = ex cos y, (x, y, z) ∈ ∂Ω,

where the solution domain Ω is two connected spheres; i.e.,

Ω = {(x, y, z) ∈ IR3 : H(x, y, z) < 1} (14)

with

H(x, y, z) = min

{

(

x− 3

4

)2

,

(

x+
3

4

)2
}

+ y2 + z2. (15)

The profile of Ω, collocation and source points are shown in Figure 2. In general,
the fictitious boundary is chosen as a sphere containing Ω. Source points are uniformly
distributed on the surface of the fictitious boundary and similarly the collocation points
on the surface of the solution domain.

We first fixed the source points on a sphere of radius 9 and various numbers of source
and collocation points. Table 4 shows the L∞ norm at 200 random internal points. Notice
that the accuracy improves sharply for the first two hundred points and little improvement
afterward.

Next, we fixed the number of source and collocation points and adjust the radius of
the fictitious sphere. When n is small, the L∞ norm deteriorates when the fictitious
boundary is close to the solution domain. Table 5 shows the L∞ norm error with various
r and n.
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Figure 2: The profiles of solution domain of Ω (left) and scattered points of collocation
and source points (right).

n L∞ norm n L∞ norm
50 5.58E-2 250 2.32E-09

100 1.41E-2 300 3.71E-09
150 5.88E-5 350 1.73E-10
200 2.43E-9 400 2.02E-10

Table 4: L∞ norm error with respect to the number of source and collocation points

r = 2 r = 4 r = 6 r = 8 r = 10 r = 12
n = 100 49.363 3.93E-2 7.26E-3 9.51E-3 2.51E-2 8.28E-2
n = 150 8.040 1.06E-02 1.15E-3 8.41E-5 6.06E-5 4.36E-5
n = 200 2.81E-10 2.01E-10 1.34E-7 2.99E-8 5.89E-9 4.04E-8

Table 5: The effect of the L∞ norm error with respect to various locations of source
points.
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5 The Dual Reciprocity Method

The DRM is based on the assumption that one can find an approximation f̃ to the
nonhomogeneous term f in (7) and that an analytical solution ũp to

Lũp(x) = f̃(x) (16)

can be obtained. Then ũp can be treated as an approximation to a particular solution
up of (7). The initial step of the DRM is to approximate f(x) by using various kinds of
radial basis functions. To avoid the ill-conditioning problem as we indicated in Section
1, we choose CS-RBFs as basis functions. More precisely, we choose a scaling factor α
and a set of uniformly distributed points in Ω, say {xj}nj=1 and seek an approximation

f̃ to f in the form

f̃(x) :=
n

∑

j=1

ajψ
[α]
j (x) =

n
∑

j=1

ajψ
[α] (‖x− xj‖) , x ∈ Ω. (17)

The unknown coefficients aj , j = 1, · · · , n are determined by forcing the interpolatory
conditions

f̃(xi) = f(xi), 1 ≤ i ≤ n. (18)

Since the CS-RBF ψ
[α]
j is positive definite, the solvability of the resulting linear system

n
∑

j=1

ajψ
[α]
j (xi) = f(xi), 1 ≤ i ≤ n, (19)

is ensured. Let

Aψ[α] =
(

ψ[α] (‖xi − xj‖)
)N

i,j=1
(20)

It is useful to note that Aψ[α] will be dense or sparse depending on the support parameter
α.

Once f̃ in (18) has been established, using (16) an approximation ũp (depending on
n and α) to a particular solution up of (7) can be written as

ũp(x) =

n
∑

j=1

ajΨ
[α]
j (x), x ∈ Ω, (21)

where Ψ
[α]
j is the solution of

LΨ
[α]
j (x) = ψ

[α]
j (x), x ∈ Ω, j = 1, · · · , n. (22)

One of the critical steps in the DRM is the derivation of Ψ
[α]
j in (22) analytically. Since

the forcing terms in (22) are radially dependent functions on Ω, analytical solvability of
(22) for operators L that are radially and translationally invariant can be expected. For
such operators if one denotes Lr to be the radial part of L, then finding an analytical
representation of ũp in (21) is equivalent to finding the analytical solution Ψ[α](r) of the
radial differential equation

LrΨ
[α](r) = ψ[α](r), r ≥ 0, (23)

where ψ[α] is given by (2) with a typical representation of ψ as in Table 3.
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6 Derivation of Analytical Particular Solution Ψ[α]

6.1 Laplacian in 2D

In this case, Lr = (1/r)(d/dr)(rd/dr). Explicit analytical representation of Ψ[α](r) can
be derived by straightforward integration; i.e.,

Ψ[α](r) =



















∫ r

0

1

s

[
∫ s

0

tψ(
t

α
)dt

]

ds, r ≤ α,

∫

α

0

1

s

[
∫

s

0

tψ(
t

α
)dt

]

ds+

∫ r

α

1

s

[
∫

α

0

tψ(
t

α
)dt

]

ds, r > α.

(24)

The above integration can be performed easily by symbolic software such as MAPLE
or MATHEMATICA. A list of particular solutions Ψ[α] corresponding to various Wend-
land’s CS-RBFs is given in the Table 6 (see Reference [9]; note the minor error in the

table there). Note that {ψi}4
i=1 are Wendland’s CS-RBFs in Table 3.

ψ Ψ

ψ1

( r

α

)



















r4

16α2
− 2r3

9α
+
r2

4
, r ≤ α,

13α2

144
+
α2

12
log

( r

α

)

, r > α.

ψ2

( r

α

)



















4r7

49α5
− 5r6

12α4
+

4r5

5α3
− 5r4

8α2
+
r2

4
, r ≤ α,

529α2

5880
+
α2

14
log

( r

α

)

, r > α.

ψ3

( r

α

)































7r10

20α8
− 64r9

27α7
+

105r8

16α6
− 64r7

7α5
+

35r6

6α4

− 7r4

4α2
+

3r2

4
,

r ≤ α,

3517α2

15120
+
α2

6
log

( r

α

)

, r > α.

ψ4

( r

α

)



























32r13

169α11
− 77r12

48α10
+

64r11

11α9
− 231r10

20α8
+

352r9

27α7

+
352r9

27α7
− 231r8

32α6
+

11r6

6α4
− 11r4

16α2
+
r2

4
,

r ≤ α,

541961α2

8030880
+

7α2

156
log

( r

α

)

, r > α.

Table 6: A list of Ψ[α] corresponding to various CS-RBFs ψ[α] in 2D.
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Figure 3: The Profile of the resulting sparse matrix for α = 0.5 using CS-RBFs.
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Figure 4: The Profile of the absolute error using ψ2 with α = 0.7.

Example 2 Consider the following problem

∆u = 2ex−y, (x, y) ∈ Ω, (25)

u = ex−y + ex cos y, (x, y) ∈ ∂Ω, (26)

where Ω ∪ ∂Ω is the unit square. The exact solution is given by u = ex−y + ex cos y.
In this example we will show the effect of the scaling factor and smoothness of two

different basis functions: ψ1 = (1 − r)
2
+ ∈ C0. and ψ2 = (1 − r)

4
+ (4r + 1) ∈ C2. Note

that 81 evenly distributed points on a regular grid are chosen as the interpolation points
in [0, 1]2. L∞ errors of u are computed on a 20 × 20 uniform grid in the domain. The
numerical tests were performed using MATLAB which has it own sparse matrix solver.
The profile of the resulting sparse matrix using a uniform grid for α = 0.5 is shown in
Figure 3 were used.

The MFS was employed to find the homogeneous solution. 20 uniformly distributed
collocation points on the boundary ∂Ω and 19 uniformly distributed source points on a
circle with radius 10 and center (0, 0).

In Table 7, the L∞ error of u for different scales α and basis functions ψ1 and ψ2

13



ψ1 ψ2 ψ1 ψ2

α L∞ L∞ α L∞ L∞

0.3 8.24E-3 5.13E-3 0.9 8.50E-4 3.37E-4
0.4 3.83E-3 1.92E-3 1.0 5.51E-4 3.37E-4
0.5 2.39E-3 1.33E-3 1.1 4.88E-4 3.06E-4
0.6 1.13E-3 5.50E-4 1.2 4.50E-4 2.78E-4
0.7 1.13E-3 4.89E-4 1.3 7.01E-4 2.67E-3
0.8 1.13E-3 3.81E-4 1.4 4.98E-4 1.11E-4

Table 7: L∞ errors for the approximate solution of u using basis function ψ1 and ψ2.

were computed. The results improve with the increase of the scale of support as one has
expected. The larger the scale of the support, the more accurate the interpolation of the
forcing term f and u. The accuracy of ψ2 slightly improves that of ψ1 due to its higher
convergence rate.

6.2 Laplacian in 3D

In this case, Lr = (1/r2)(d/dr)(r2d/dr). Similar to the 2D case, a list of Ψ[α] in Table 8

can be derived [11]. Note that {ψi}4
i=1 are Wendland’s CS-RBFs in Table 3.

Example 3 Let us consider the following Poisson problem in 3D:

∆u = −3 cos (x) cos(y) cos (z) , (x, y, z) ∈ Ω (27)

u = cos (x) cos(y) cos (z) , (x, y, z) ∈ ∂Ω (28)

Define R(θ) =

√

cos(2θ) +
√

1.1 − sin2(2θ). The surface of the domain Ω ∪ ∂Ω is repre-

sented by the following parametric surface

r(θ, φ) = R(θ) cos (θ) i +R(θ) sin (θ) cos (φ) j+R(θ) sin (θ) cos (φ) k, (29)

where θ ∈ [0, π), φ ∈ [0, 2π). The analytical solution of (27)-(28) is given by

u(x, y, z) = cos (x) cos(y) cos (z) (x, y, z) ∈ Ω ∪ ∂Ω. (30)

In this example, the basis function ψ = (1 − r)
4
+ (4r + 1) was chosen to approximate

the forcing term. 300 quasi-random points [42] were chosen in a box [−1.5, 1, 5]× [−.5, .5]
×[.5, .5]. By the collocation method, particular solutions can be found directly. To solve the
sparse system, a real sparse symmetric positive definite linear equation solver (DLSLDX)
from the IMSL library (PC version) was employed. In the MFS, 100 quasi-random field
points were selected on the parametric surface, as shown in Figure 5, and the same number
of quasi-random source points on a sphere with center on origin and radius 10. The
numerical results were computed along the x-axis with y = z = 0. The results of relative
percentage errors with three different scaling factors are shown in Figure 6. Notice that
these results are consistent with intuition. With larger support, more interpolation points
are included in the process of approximation. Therefore, the more information provided,
the more accurate solutions are expected.
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ψ Ψ

ψ1

( r

α

)



















r4

20α2
− r3

6α
+
r2

6
, r ≤ α,

α2

12
− α3

30r
, r > α.

ψ2

( r

α

)



















r7

14α5
− 5r6

14α4
+

2r5

3α3
− r4

2α2
− r2

6
, r ≤ α,

α2

14
− α3

42r
, r > α.

ψ3

( r

α

)































7r10

22α8
− 32r9

15α7
+

35r8

6α6
− 8r7

α5
+

5r6

α4

− 7r4

5α2
+
r2

2
,

r ≤ α,

α2

6
− 8α3

165r
, r > α.

ψ4

( r

α

)



























16r13

91α11
− 77r12

52α10
+

16r11

3α9
− 21r10

2α8
+

176r9

15α7

− 77r8

12α6
+

11r6

7α4
− 11r4

20α2
+
r2

6
,

r ≤ α,

4903α2

60 060
− 8α3

165r
, r > α.

Table 8: A list of Ψ[α] corresponding to various CS-RBFs ψ[α] in 3D.
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Figure 5: Quasi-random points on the surface as shown in (29).
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Figure 6: The effect of various scaling factor α

6.3 Helmholtz Equation in 3D

For the modified Helmholtz operator L = ∆ − λ2, the derivation of the previous cases
by straightforward integration is not feasible. Golberg et al [24] provided an elegant
alternative method for deriving Ψ[α] in (22). We briefly summarize it as follows.

Using the radial part of the three dimensional Laplacian, with L = ∆− λ2, equation
(22) can be rewritten in the form where p is an appropriately chosen polynomial of degree,
say k ≥ 0, so that the right hand side is a C2k CS-RBF in Table 8.

1

r2
d

dr

(

r2
dΨ[α]

dr

)

− λ2Ψ[α] =







(

1 − r

α

)n

p(
r

α
), 0 ≤ r ≤ α,

0, r > α,
(31)

Note that for r = 0, (31) is to be considered in the limiting case as r → 0+.
Let

Ψ[α](r) =
w(r)

r
, r > 0, (32)

then one has
1

r2
d

dr

(

r2
dΨ[α]

dr

)

=
1

r

d2w

dr2
.

Equation (31) becomes

d2w

dr2
− λ2w =







r
(

1 − r

α

)n

p(
r

α
), 0 ≤ r ≤ α,

0, r > α.
(33)

The general solution of the above equation is given by

w(r) =

{

Ae−λr +Beλr + q(r), 0 ≤ r ≤ α,

Ce−λr +Deλr, r > α,
(34)

where q(r) is a polynomial particular solution of the first equation of (33). Note that q(r)
can be obtained fairly easily by symbolic ODE solvers such as Maple or Mathematica.
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The four coefficients in (34) are to be chosen so that Ψ[α] is twice differentiable at r = 0, α
and hence on [0,∞). For the required differentiability of Ψ[α] at 0, the following theorem
[24] shows that it is sufficient to impose the condition that w(0) = 0.

Theorem 6.1 Let w be a solution of (33) with w(0) = 0. Then Ψ[α] defined by (32) is
twice continuously differentiable at 0 with

Ψ[α](0) = w′(0), Ψ′[α] = 0, Ψ
′′[α] =

1

3

[

λ2w′(0) + p(0)
]

.

Furthermore, Ψ[α] satisfies (31) as limr→0+ .

By the above theorem and (34), the twice continuous differentiability of Ψ[α] at 0
holds if

A+B + q(0) = 0. (35)

It is easy to show that w is twice differentiable at r = α > 0, if

{

Ae−λα +Beλα = Ce−λα +Deλα,

−Aλe−λα +Bλeλα + q′(α) = −Cλe−λα +Dλeλα
(36)

In (35) and (36) there are three equations and four unknowns. Hence one of the unknowns
can be chosen arbitrary. For convenience, set D = 0. Consequently, one has























A = −[B + q(0)],

B = −e
−λα[q′(α) + λq(α)]

2λ
,

C = B(e2αλ − 1) + q(α)eαλ − q(0).

(37)

It follows that one obtains a particular solution

Ψ[α](r) =



























λ(2B + q(0)) + q′(0), r = 0,

[

Ae−λα +Beλα + q(r)
]

r
, 0 < r ≤ α,

Ce−λα

r
, r > α,

(38)

where A,B and C are as in (37). Notice that for r > α and for λ > 0 and large,
Ce−λα/r ≈ 0 for r ≫ α.

In fact, the formula Ψ[α](r) for the Helmholtz-type operators in (31) holds for all
CS-RBFs and only the representation of q(r) in (38) differs for various choices of CS-
RBFs. These particular solutions for Helmholtz-type operators using CS-RBFs in 3D
are expected to have extensive applications in solving three dimensional time-dependent
problems using boundary integral and fundamental solution methods. For details, we
refer readers to the references [8, 22].

By using symbolic ODE solvers, one has the following:
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q1(r) =
4

λ4α
−

(

1

λ2
+

6

λ4α2

)

r +
2

λ2α
r2 − 1

λ2α2
r3

q2(r) = − 480

α3s6
− 2880

α5s8
+

(

1800

α4s6
+

60

α2s4
− 1

s2

)

r −
(

240

α3s4
+

1440

α5s6

)

r2

+

(

300

α4s4
+

10

α2s2

)

r3 −
(

20

α3s2
+

120

α5s4

)

r4 +
15

s2α4
r5 − 4

s2α5
r6

q3(r) =
322 560

λ8α5
+

7741 440

λ10α7
+

(

168

λ4α2
− 3

λ2
− 2116 800

λ8α6
− 12 700 800

λ10α8
− 25 200

λ6α4

)

r

+

(

3870 720

λ8α7
+

161 280

λ6α5

)

r2 +

(

28

λ2α2
− 4200

λ4α4
− 2116 800

λ8α8
− 352 800

λ6α6

)

r3

+

(

13 440

λ4α5
+

322 560

λ6α7

)

r4 −
(

210

λ2α4
r5 +

17 640

λ4α6
+

105 840

λ6α8

)

r5

+

(

448

λ2α5
+

10 752

λ4α7

)

r6 −
(

2520

λ4α8
+

420

λ2α6

)

r7 +
192

λ2α7
r8 − 35

λ2α8
r9

(39)

where q1, q2 and q3 are q(r) in (38) for ψ[α] = (1 − r/α)
2
+ , (1 − r/α)

4
+ (4r/α+ 1) , and

(1 − r/α)6+ (35r/α+ 18r/α+ 3) in Table 3 respectively. Note that we have corrected an
error of q3(r) in Example 3 of Reference [24]. The following modified Helmholtz equation
was considered by Golberg et al [24].

Example 4 Consider the following Helmholtz problem in 3D

(∆ − 400)u(x, y, z) = −397

400
ex+y+z, (x, y, z) ∈ Ω, (40)

u(x, y, z) =
ex+y+z

400
, (x, y, z) ∈ ∂Ω, (41)

where the physical domain Ω is two connected spheres in IR3 which is described in (14)-
(15) and Figure 2 in Section 4.

To approximate particular solutions, 400 quasi-random points were generated to serve
as the interpolation points in Ω∪∂Ω. The CS-RBF ψ[α] = (1 − r/α)

2
+ was chosen as the

basis function to interpolate the nonhomogeneous term in (40). The sparseness of the
interpolation matrix depends on the scaling factor α. To approximate the homogeneous
solution, the MFS with 100 uniformly distributed collocation points on the surface of
the physical domain was employed. The same number of source points on the fictitious
surface which is a sphere with radius 10 and center (0,0) were chosen.

The L∞ norm error was computed at 500 random points in Ω for various choices of the
scaling factor α. The number of nonzero elements and the sparseness of the interpolation
matrix, L∞ norm, and the corresponding computing time are shown in Table 9. The
numerical results shown here are especially encouraging for future work in solving a large
class of time-dependent problems.

6.4 Bi-harmonic operator in 3D

The procedure shown above can also be used to find analytic particular solutions for the
Laplacian and bi-harmonic operators without integration as shown in (24). Consider the
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α nz Sparseness(%) L∞ CPU (sec.)

0.2 756 0.40 2.28E-2 01.40
0.4 3392 2.10 1.61E-2 04.43
0.6 10562 6.60 9.77E-3 07.48
0.8 21526 13.5 6.45E-3 10.63
1.0 36476 22.8 4.50E-3 13.71
1.2 54116 22.8 3.82E-3 16.98
1.4 73722 46.0 3.30E-3 20.53
1.6 92722 57.9 2.90E-3 24.08
1.8 110498 69.0 2.63E-3 27.60

Table 9: Sparseness, error estimates and CPU time for various α.

bi-harmonic operator L = ∆2 in 3D. Let

W =
1

r2

(

d

dr
r2
dΨ[α]

dr

)

(42)

Then one has

∆2
rΨ

[α] =
1

r2
d

dr
r2
d

dr

[

1

r2

(

d

dr
r2
dΨ[α]

dr

)]

=
1

r2

(

d

dr
r2
dW

dr

)

(43)

By a change of variable, one assumes

W (r) =
U(r)

r
. (44)

Then,

1

r2

(

d

dr
r2
dW

dr

)

=
1

r

d2U

dr2
=

{ (

1 − r

α

)n

p(
r

α
), 0 ≤ r ≤ α,

0, r > α.
(45)

Equation (45) is a simple differential equation

d2U

dr2
=







r
(

1 − r

α

)n

p(
r

α
), 0 ≤ r ≤ α,

0, r > α.

The general solution of (45) can be found easily. For instance, let ψ[α] = (1− r
α )4+(4 rα+1),

the exact solution U is given by

U (r) =







r8

14α5
− 5r7

14α4
+

2r6

3α3
− r5

2α2
+
r3

6
+A1 +A2r, 0 ≤ r ≤ α,

C1r + C2, r > α.

where A1, A2, C1 and C2 are arbitrary constant. Choosing A1 = A2 = 0,

U (r) =







r8

14α5
− 5r7

14α4
+

2r6

3α3
− r5

2α2
+
r3

6
, 0 ≤ r ≤ α,

C1r + C2, r > α.
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From (44), one has

W (r) = U (r) /r =















r7

14α5
− 5r6

14α4
+

2r5

3α3
− r4

2α2
+
r2

6
, 0 ≤ r ≤ α,

C1 +
C2

r
, r > α.

From (42),

1

r2

(

d

dr
r2
dΨ[α]

dr

)

=















r7

14α5
− 5r6

14α4
+

2r5

3α3
− r4

2α2
+
r2

6
, 0 ≤ r ≤ α,

C1 +
C2

r
, r > α.

Again, by a change of variable and then repeating the above procedure, one obtains

Ψ[α](r) =















r9

1260α5
− 5r8

1008α4
+

r7

84α3
− r6

84α2
+

r4

120
, 0 ≤ r ≤ α,

C1r
2 + C2r + C3

1

r
+ C4, r > α.

where C1, C2, C3 and C4 are to be determined by matching the continuity of ψ, ψ′, ψ′′

and ψ′′′ at r = α. Notice that for r ≤ α,

ψ(r) =
1

1260

r9

α5
− 5

1008

r8

α4
+

1

84

r7

α3
− 1

84

r6

α2
+

1

120
r4, ψ(α) =

α4

240

ψ′(r) =
1

140

r8

α5
− 5

126

r7

α4
+

1

12

r6

α3
− 1

14

r5

α2
+

1

30
r3, ψ′(α) =

4α3

315

ψ′′(r) =
2

35

r7

α5
− 5

18

r6

α4
+

1

2

r5

α3
− 5

14

r4

α2
+

1

10
r2, ψ′′(α) =

α2

45

ψ′′′(r) =
2

5

r6

α5
− 5

3

r5

α4
+

5

2

r4

α3
− 10

7

r3

α2
+

1

5
r, ψ′′′(α) =

α

210

(46)

For r > α,

ψ′(r) = 2C1r + C2 −
C3

r2
, ψ′′(r) = 2C1 + 2

C3

r3
, ψ′′′(r) = −6

C3

r4

Hence,


















































C1α
2 + C2α+

C3

α
+ C4 =

α4

240

2C1α+ C2 −
C3

α2
=

4α3

315

2C1 +
2C3

α3
=
α2

45
−6C3

α4
=

α

210

Solving the above system of equations, one obtains
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C1 =
1

84
α2, C2 = − 1

84
α3, C3 = − 1

1260
α5, C4 =

5

1008
α4

Unfortunately, the above procedure fails for differential operators in the 2D case. As
a result, the closed-form particular solution of Helmholtz-type operators in 2D is still not
available.

6.5 Alternative Approach for Analytic Particular Solution

In general, the closed-form particular solutions stated above are difficult to derive.
Only for some special differential operators with the properly chosen basis function can
the closed form particular solution be obtained. Here we would like to give a simple
mathematical statement that will give us alternative to obtain closed-form particular
solutions.

If the given differential operator L is positive definite and Ψ is a positive definite radial
basis function, then LΨ is a positive definite function. Using this fact, we can choose
a positive definite radial basis function as the particular solution and then produce an
interpolation function ψ = LΨ which is positive definite. In this way, not only is the
invertibility of the interpolation matrix guaranteed, but also the particular solution can
be obtained automatically. Here we only give preliminary results. Details will be provided
in a forthcoming paper.

Example 5 We consider the example of the Poisson problem in (25)-(26). Since CS-
RBFs are positive definite functions, we can choose the following basis function as a
particular solution

Ψ(r) =
(

1 − r

α

)6

+

(

35r2

α2
+

18r

α
+ 3

)

. (47)

Then the interpolation function will be

ψ(r) = ∆Ψ(r) =
112

α4

(

1 − r

α

)4

+

(

20r2 − 4rα− α2
)

. (48)

The other special feature of this approach is that the particular solution is only evaluated
within the cut-off parameter unlike the previous approach where the particular solution
at all the interpolation points has to be evaluated. As we notice the overall solution of
the earlier approach of computing the particular solution will be more accurate but less
efficient for small α as shown in Table 7 and Table 10. However, there is little difference
in L∞ when α becomes large. To perform the numerical computation, we use the same
data shown in Example 2 and the results are shown in Table 10. Figure 7 shows the
profile of the absolute error using α = 0.7.

Example 6 The closed-form particular solution for the Helmholtz equation in 2D is not
available in Section 6 due to the difficulty in deriving the particular solution in the reverse
order. Since ∆ − λ2 is a negative definite differential operator, the above mentioned
approach is allowable. This provides a way to produce a particular solution that is not
possible in the previous cases. Let us choose the same particular solution Ψ as in the
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α L∞ α L∞

0.3 5.77E-2 0.9 2.47E-4
0.4 2.68E-2 1.0 1.75E-4
0.5 9.10E-3 1.1 2.32E-4
0.6 3.52E-3 1.2 1.28E-4
0.7 1.51E-3 1.3 1.40E-4
0.8 5.68E-4 1.4 1.57E-4

Table 10: L∞ norm error using new approach.
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Figure 7: The profile of absolute error using α = 0.7.

previous example, then

ψ(r) =
(

∆ − λ2
)

Ψ(r)

=
(

1 − r

α

)4

+

(

112

α4

(

20r2 − 4rα− α2
)

− λ2
(

1 − r

α

)2
(

35r2

α2
+

18r

α
+ 3

))

.

We consider the following Helmholtz equation

(

∆ − λ2
)

u(x, y) =
(

1 − λ2
)

(ex + ey), (x, y) ∈ Ω, (49)

u(x, y) = ex + ey, (x, y) ∈ ∂Ω, (50)

where Ω is a unit circle. In the numerical computation, we choose λ2 = 100 and 150
interpolation points were selected in the domain. For the MFS, 35 evenly distributed
collocation points and the same number of source points were chosen. The fictitious
boundary is a circle with radius 10 and center at the origin. The L∞ norm errors are
shown in Table 11. Notice that the accuracy continues to improve when the scaling factor
increase beyond the full support.

7 Multilevel Schemes for CS-RBFs

As indicated in the Introduction, the determination of the scaling factor α poses a
problem. For smaller value of α, the quality of approximation is poor. On the other
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α L∞ α L∞

0.3 2.618 1.1 2.982E-2
0.4 1.711 1.2 2.415E-2
0.5 0.821 1.3 1.978E-2
0.6 0.289 1.4 1.634E-2
0.7 0.098 2.0 6.425E-3
0.8 0.051 4.0 1.228E-3
0.9 4.469E-2 8.0 3.828E-4
1.0 3.658E-2 10 2.965E-4

Table 11: L∞ norm errors for Helmholtz’s equation.

hand, when α becomes too large, the resulting interpolation matrix using CS-RBFs is no
longer sparse and the main purpose of using CS-RBFs is lost. Furthermore, due to the
slow convergence rate of CS-RBFs, the determination of both the number of interpolation
points and the size of the scaling factor α becomes an important issue. The best way to
tackle the above issue is to a certain extent to consider a multilevel scheme by choosing
various sizes of interpolation point sets and corresponding cut-off parameters.

Multilevel schemes are a common practice in multivariate data analysis. The basic
idea of a multilevel scheme is to capture the main feature of the given function in the
first few levels with few interpolation points using large scaling factors and small details
are added on in the later steps which consist of a large number of interpolation points
but small scaling factors α. Schaback briefly mentioned this in his review paper [43],
and later it was fully implemented by Floater and Iske [17] in the context of multivariate
interpolation. Chen et al [10] further applied the concept of a multilevel scheme to solving
PDEs in the context of the DRM.

Let DN = {xi}Ni=1 be a set of interpolation points. Next one subdivides DN into a
sequence of uniformly distributed point sets

D1 ⊂ D2 ⊂ · · · ⊂ Dk ⊂ · · · ⊂ DL = DN

where Dk = {xi}Nk

i=1 with appropriately chosen Nk, k = 1, · · · , l − 1 and NL = N . For
each k = 1, · · · , l, the parameter Nk depends on the choice of a cut-off parameter αk,
where

α1 > α2 > · · · > αk > · · · > αL

is a chosen set of cut-off parameters. The choice of αk and Nk, k = 1, · · · , l depends on
the required minimal accuracy of the approximation and the size and sparsity constraints
of the interpolation matrix Aψ[α

k
] .

In [17], a thinning algorithm was devised to produce a sequence of evenly distributed
subsets Dk, k = 1, · · · , l − 1 of interpolation points. For purely surface fitting, the
data points may be collected from the field and the thinning algorithm is necessary
for implementing the multilevel method. For solving a partial differential equation, the
interpolation points are normally selected in the domain. For simplicity, Chen et al [10]
used a quasi-Monte Carlo method [42] to generate a sequence of quasi-random points
which also ensures that the interpolation points are uniformly distributed at each level.
In [10], two multilevel algorithms were proposed to extend the interpolation scheme to
solving PDEs. We briefly summarize these approaches in the following subsections.
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7.1 Algorithm I for Multilevel CS-RBFs

The first multilevel scheme proposed to find an approximate solution of a PDEs can be
described as follows:

For k = 1, · · · , l with αk being the scaling factor for Dk one sets

f̃k(x) =

Nk
∑

j=1

c
(k)
j ψ[αk]

(∥

∥

∥
x− x

(k)
j

∥

∥

∥

)

, x
(k)
j ∈ Dk (51)

and at level k one chooses the approximate particular solution of (16) as

ũkp(x) =

Nk
∑

j=1

c
(k)
j Ψ

[αk]
j (x), x ∈ Ω, (52)

where Ψ
[αk]
j is a solution of

LΨ
[αk]
j (x) = ψ

[αk]
j (x), x ∈ Ω, j = 1, · · · , Nk. (53)

The solutions Ψ
[αk]
j , j = 1, · · · , Nk, k = 1, · · · , l can be computed using analytical

formulas such as those described in Section 5. For k = 1, the coefficients c
(1)
j , j = 1, · · ·N1

in (51) and (52) are determined by

f̃1(xi) = f(xi), 1 ≤ xi ≤ N1, (54)

and for k = 2, · · · , l the coefficients c
(k)
j , j = 1, · · ·Nk in (51) and (52) are computed

using the interpolatory constraints

f̃k(xi) = f(xi) −
k−1
∑

j=1

f̃ j(xi), 1 ≤ xi ≤ Nk. (55)

Consequently, at each level k = 1, · · · , l, the nonhomogeneous function f is approximated
by

∑k
i=1 f̃

k. Clearly, f(x) = liml→∞

∑l
k=1 f̃

k(x), and f̃k(x) → 0 as k → ∞ for x ∈ Ω.
At the first level one chooses the support value α1 high and the number of points N1

in D1 low and obtains the unknown coefficient vector c(1) =
[

c
(1)
1 , · · · , c(1)N1

]T

by solving

the N1 ×N1 dense system
Aψ[α1]c(1) = f (1) (56)

where f (1) = [f(x1), · · · , f(xN1)]
T
. For subsequent levels k = 2, · · · , l, one interpolates

the residual of the previous levels. That is for k = 2, · · · , l, to compute the vector

c(k) =
[

c
(k)
1 , · · · , c(k)Nk

]T

one solves the Nk ×Nk finite dimensional systems of the form

Aψ[α
k
]c(k) = f (k) (57)

with the first Nk−1 entries of f (k) being zeros and the remaining Nk −Nk−1 entries are
given by (55). As the level increases, one decreases the support value and increases the
number of interpolation points. Consequently, one solves a sequence of finite dimensional
systems with increasing dimension as well as sparsity.
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One then continues our algorithm by setting the approximate particular solution ũNp
of (16) as

ũNp =

l
∑

k=1

ũkp (58)

with ũkp, k = 1, · · · , l given by (52) and N = Nl, the number of chosen interpolation
points in the final level.

In general, the particular solution in (16) is not unique and hence the above algorithm
yields approximate particular solutions ũNp converging to a ‘particular’ particular solution
of (16). Using the approximate particular solution (58) the final step in our algorithm
is to compute an approximate solution uNh of the associated approximate homogeneous
problem.

One may use boundary integral methods or the MFS to find the homogeneous solution
uNh . Finally one takes uN = uNh +ũNp as an approximation to the unique solution u of (3)–
(5). The above multilevel algorithm requires a priori the choice of the number of levels
l and computation of particular solutions at all the levels k = 1, · · · , l before computing
the approximate homogeneous solutions uNh . Consequently, in the algorithm I one needs
a stopping criteria for choosing N depending on TOL.

One approach to tackle this problem is to observe that since f̃k(x) → 0 as k → ∞
for x ∈ Ω, one expects that ||c(k)|| → 0 as k → ∞. Hence, from (52), one expects
||ũkp||∞ → 0 as k → ∞. So one may think of using the criteria that one proceed with the
above algorithm I up to level k and choose N = Nk as the stopping criteria where NK
is such that ||ũkp||∞ < TOL. However, this criteria may not be robust in general: For

a finite level k, ũkp depends both on the decaying coefficient vector c(k) as well as the

solutions Ψ
[αk]
j of (53). But for all j = 1, · · · , Nk, Ψ

[αk]
j + ρ is also a solution of (53) for

any constant ρ where L (ρ) = 0. So for example one may have chosen Ψ
[αk]
j + 1

TOL (or

Ψ
[αk]
j + 1

||c(k)||
) as a solution of (53) there by making the criteria for a ||ũkp||∞ < TOL for

a finite k not robust.
A second multilevel algorithm has been proposed to enhance the robustness of the

stopping algorithm mentioned above. The trade-off is that some additional computation
cost is increased.

7.2 Algorithm II for Multilevel CS-RBFs

Chen et al [10] proposed a multilevel approach by decomposing the exact unique solution
of (3)–(5) into a series of solutions of simpler nonhomogeneous equations based on
algorithm I. Their aim was to devise a multilevel CS-RBF based computational scheme
to find approximate solutions of (3)–(5) satisfying a given error tolerance TOL.

Let u1
h be the unique solution of

Lu1
h(x) = f̃1(x), x ∈ Ω, (59)

u1
h(x) = g(x), x ∈ ∂Ω, (60)

and for each k = 2, 3, · · · let vk be the unique solution of

Lvk(x) = f̃k(x), x ∈ Ω, (61)

vk(x) = 0, x ∈ ∂Ω. (62)
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In (59) and (61), f̃k is as defined in (51) with interpolatory constraints given by (54) for
k = 1 and by (55) for k = 2, 3, · · ·. Since f(x) =

∑∞
k=1 f̃

k(x), x ∈ Ω, it is easy to see
that the unique solution u of (3)–(5) can be written as

u(x) =

∞
∑

k=1

vk(x), x ∈ Ω. (63)

Further, since ||f̃k||∞ → 0 as k → ∞, we have ||vk||∞ → 0 as k → ∞ and
{

||vk||∞
}

is a
strictly monotonically decreasing sequence of real numbers.

We set an approximate solution of (3)-(5) to be

uN (x) =

l
∑

k=1

vk(x), x ∈ Ω (64)

where l is to be chosen such that N = Nl is the number of interpolation points in Dl and
that ||u− uN ||∞ = ||∑∞

k=l+1 v
k||∞ < TOL. Using the properties of the unique solution

vk of (61)-(62), the stopping criteria of finding l can be achieved (approximately) by
looking for the minimum iteration level l such that ||vl||∞ < TOL. (Perhaps one may
also choose ||vl||∞ < (TOL)2 or ||vl||∞ < c. TOL for some constant c << 1 as a stronger
stopping criteria.) To compute approximate solutions vk, k = 1, · · · , l, the following
procedure was proposed.

For k = 1, we write v1 = ũ1
p + u1

h, where ũ1
p is a particular solution of (59) com-

puted using the representation (52) and (54), and u1
h is the approximate solution of the

homogeneous problem

Lu1
h(x) = 0, x ∈ Ω, (65)

u1
h(x) = g(x) − ũ1

p(x), x ∈ ∂Ω. (66)

The homogeneous BVP (3)-(5) can be solved for example using a robust boundary inte-
gral or MFS approach with high accuracy. This will lead to solving a finite dimensional
system with a dense matrix ML (independent of the boundary data). The procedure of
solving this system should involve finding first an LU factorization of ML. Then one com-
putes an approximate solution u1

h using the LU factorization with cheaper appropriate
matrix-vector multiplications .

For k = 2, · · · , l we write vk = ũkp + ukh, where ũkp is a particular solution of (61)

computed through (52) and (55), and ukh is the approximate solution of the homogeneous
problem

Lukh(x) = 0, x ∈ Ω, (67)

ukh(x) = −ũkp(x), x ∈ ∂Ω. (68)

Using the LU factorization of ML, the approximate solution ũkp at each level k = 2, · · · , l
can be computed easily with just appropriate matrix-vector multiplications involving the
ũkp.

It is useful to note that compared to algorithm I described earlier, the above algorithm
involves solving in addition the homogeneous problems at levels k = 2, · · · , l. Since in
practice the maximum number of levels l is not expected to exceed 10, the additional
matrix-vector multiplications computational cost involved in algorithm II is justified
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if the stopping criteria is an important issue for certain practical problems involving
adaptive type coding. For many simple test problems, perhaps algorithm I may be
sufficient.

To demonstrate how the multilevel schemes work, we solve the following Poisson
problem in the 2D case. We only show the result of algorithm 2 mentioned above. For
the details of algorithm 1 and the 3D case, we refer the reader to Reference [10]. Here we
reproduce their results with a different solution domain. For the purpose of visual effect,
all the figures and the Table below for this test example were obtained on a 25 × 25
uniform grid in the domain [1, 2]2. Notice that the algorithm works for any arbitrary
domain. For each level k = 1, 2, 3, 4, we solved the sparse matrix system Aϕ[α

k
]c(k) = f (k)

(see (56) and (57) using the IMSL library sparse matrix solver DLSLDX (PC version).
All the numerical computations were performed using double precision. We also choose
TOL = 10−3.

Example 7 Consider the Poisson problem:

∆u(x, y) = f(x, y) in Ω, (69)

u(x, y) = g(x, y) on ∂Ω. (70)

where Ω ∪ ∂Ω = [1, 2]2. For testing purposes we chose f and g in such a way that the
exact solution of (69)–(70) is

u(x, y) = sin
πx

6
sin

7πx

4
sin

3πy

4
sin

5πy

4
, (x, y) ∈ Ω. (71)

The choice (71) is possible if the boundary data g(x, y) in (70) is same as in (71) and if
the inhomogeneous term f(x, y) is given by

f(x, y) = −751π2

144
sin

πx

6
sin

7πx

4
sin

3πy

4
sin

5πy

4
+

7π2

12
cos

πx

6
cos

7πx

4
sin

3πy

4
sin

5πy

4

+
15π2

8
sin

πx

6
sin

7πx

4
cos

3πy

4
cos

5πy

4
.

(72)
The profiles of the exact solution (left) and the forcing term f(x, y) (right) are shown in
Figure 8. We observe that f(x, y) has a relatively large fluctuation in the domain which
makes the approximation more difficult.

To interpolate f(x, y), we choose the CS-RBF ϕ(r) = (1 − r)
4
+ (4r + 1) . Using the

quasi-Monte Carlo based subroutine SOBSEQ [42], we generated N = 500 quasi-random
points in the domain. Following our earlier notation, we chose four levels:

α1 = 1.0, α2 = 0.8, α3 = 0.5, α4 = 0.2, and N1 = 30, N2 = 150, N3 = 300 N4 = 500

and for k = 1, 2, 3, 4, Dk consisting of first Nk points from the generated quasi-random
points in [1, 2]2.

For k = 1, 2, 3, 4 the sparsity structure (with non-zero entries nzk) of the resulting
Nk ×Nk matrix Aϕ[α

k
] and the absolute maximum error are given in Table 12.

The profile of the interpolation error of the forcing term ek = f − ∑k
i=1 f

k at each
level k = 1, 2, 3, 4 are given in Figure 9. The main interest is in the particular solutions
obtained at each level. Their profiles are given in Figure 10.

27



1
1.2

1.4
1.6

1.8
2

1

1.2

1.4

1.6

1.8

2
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1
1.2

1.4
1.6

1.8
2

1

1.2

1.4

1.6

1.8

2
−50

−40

−30

−20

−10

0

10

20

30

40

Figure 8: The profiles of exact solution (left) and forcing term f(x, y) (right).

Nk nzk % L∞ error

30 459 51 0.1984
150 9729 43.24 0.59E-3
300 22057 24.50 8.86E-3
500 13299 5.31 8.758E-3

Table 12: Sparsity pattern of the interpolation matrix and L∞ error.

As expected, from Figures 9 and 10, one observes that ‖ek‖∞ and ||ũkp||∞ get smaller
as the level increases; i.e. the scaling factor α shrinks and number of interpolation points
increases. The profiles of the solution produced at each level, ũkp + ukh, k = 1, 2, 3, 4, are
shown in Figure 11. One notes that the contribution of the solution at level 3 and 4 is
almost insignificant. The overall errors ‘after’ each level are shown in Figure 12 which
are consistent with the solution profile in Figure 11.

8 Iterative Methods for DRBEM with CS-RBFs

For complicated geometrical problems in 3D, large numbers of unknowns are required
to represent the solution. The resulting matrix that simulates the problem may be so
large that it exceeds the capacity of the computer hardware memory and it becomes
impractical to solve it by traditional Gaussian elimination. As a result, the matrix size
is often the limiting factor that defines the largest problem a given computer can solve.

In the FDM literature, the so-called relaxation technique [44, 45] has been widely
used to circumvent the difficulty of assembling and inverting large scale matrices. The
solution process is that an initial trial solution is assigned to a solution grid. The discrete
values at each node are corrected in an iterative manner until convergence is achieved. No
matrix or matrix elimination process is needed. In order to achieve the goal of devising an
efficient algorithm to solve 3D fluid dynamics problems governed by the Navier-Stokes
equation, Cheng et al [12] implemented an iterative BEM coupled with the DRM to
solve Poisson’s equation. They used the standard DRBEM solution procedure; i.e.,
the inhomogeneous terms were approximated by a series of radial basis functions. In
[12], the iterative method was adopted to evaluate the homogeneous solution using the
BEM and inhomogeneous solutions using CS-RBFs which avoid assembling the matrices.
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Figure 9: Interpolation errors after each level.
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Figure 10: Particular solutions produced at each level.
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In evaluating the particular solution, the authors claimed that none of the globally
supported RBFs converged using iterative methods. Instead, only CS-RBFs achieved
convergence. Recently, Tsai et al [51] Young et al [52] extended the same algorithm
to solve 3D Poisson’s equation and the Stokes flow equation. In fact, we would like to
comment that the inverse multiquadric is also a globally supported positive definite RBF.
Hence, the iterative method should also work using inverse MQs. We will follow up an
example to confirm this shortly.

There are many iterative linear equation solvers available. In [12, 47, 51, 52], two
iterative methods, the Gauss-Seidel method and the conjugate gradient method, were
presented to solve the homogeneous equation in (8)-(10) and the inhomogeneous equation
in (7). Using the method of particular solutions, there are two linear systems to be
solved. For the homogeneous equation in (8)-(10), iterative BEMs were implemented.
For evaluating the particular solution, first we need to solve the equivalent linear system
in (19). Notice that the matrix A in (20) is only imaginary. The detailed implementation
of these two iterative schemes can be found in standard textbooks on numerical analysis.
Here we present a 2D example for solving Poisson’s equation shown in Reference [12].
For the numerical results for the 3D Poisson equation and Stokes flows problems, we
refer readers to references [47, 51, 52].

Example 8 Let us consider the same Poisson problem as in (69)-(70). An 11 × 11
uniform grid was used for interpolation points. An iterative bi-conjugate gradient method
was implemented. In general, an arbitrary initial value can be assigned. In this case, it is
noticed that the diagonal terms of the CS-RBF collocation matrix are all equal to unity,
one can simply assign the initial trial values as

aj = f(xj), i = 1, 2, · · · , n.
Two scaling factors, α = 0.5 and 1.5, were chosen for the numerical test. The first order
CS-RBF was adopted. For the case of α = 0.5, only 8 iterations are needed to converge to
a relative tolerance of 10−2, and 17 iterations to a tolerance of 10−4. The iterative scheme
is highly efficient. For the case of α = 1.5, the number of iterations for convergence is
about the same as the case of α = 0.5. For the second order CS-RBF, the number of
iterations has significantly increased, particularly for large scaling factors, as shown in
Figure 3 in Reference [12].

Next, we consider the effect of the number of interpolation points on the convergence
rate. The tolerance is set at 10−3. The number of iterations versus the number of
collocation points were shown in Figure 4 in Reference [12]. The result indicated a relation

iteration number ∼ (number of interpolation points)1/2

The accuracy of the approximation was also examined. The maximum relative error
using the 11 × 11 grid and the first order CS-RBF with α = 0.5 is 2.8%. For the second
order CS-RBF, the accuracy is only slightly improved, with a relative maximum error of
−2.5%. Little improvement was reported for the larger scaling factors. Based on these
tests shown in Reference [12], it was concluded that the first order CS-RBF with α = 0.5
should be used to proceed with solving the homogeneous equation.

For comparison, other globally supported RBFs were also tested. It was observed that
the thin plate spline gave a relative maximum error of 1.7% and the first order conical
RBF 2.6%. Note that in both of these two cases, the iterative scheme failed and matrix
elimination methods were used.
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CS-RBF Inverse MQ

α L∞ norm # iteration c L∞ norm # iteration
0.5 1.368E-3 30 0.6 8.071E-5 157
0.7 4.894E-4 36 0.8 6.528E-6 197
1.0 2.239E-4 42 1.0 7.632E-5 198
1.2 1.842E-4 45 1.5 3.658E-6 109
1.4 1.811E-4 47 2.0 1.412E-6 156

Table 13: Comparison of iterate method using CS-RBF and inverse MQ.

Example 9 To show the difference of iterative methods using CS-RBFs and inverse MQ,
we redo the example of the 2D Poisson equation in (25)-(26). We choose the CS-RBF
ψ[α] = (1− r/α)4+(4r/α+1) and the inverse MQ ψ = 1/

√

(r2 + c2), where c is the shape

parameter, and the particular solution corresponding to Ψ is given by Ψ =
√
r2 + c2 −

c log(c +
√
r2 + c2). The tolerance for the convergence of the iteration is fixed at 10−5.

The L∞ norm error and the number of iterations required are shown in the following
table. These results were obtained using the MATLAB iteraive solver BICG using the
bi-conjugate gradient method. In the table, we note that, using CS-RBFs, the overall
accuracy and the number of iterations depend on the scale of the support which contradicts
[12]. The inverse MQ produces higher accuracy but at the cost of efficiency; i.e., higher
number of iterations. However, we also found that if the tolerance for the convergence of
the iteration was reduced to 10−3, and the overall accuracy is in the range of 10−4 and
the number of iterations is significantly reduced to the range between 30 and 40.

Finally, we would like to comment that there are positive definite RBFs other than
CS-RBFs that can be constructed.

9 Numerical Comparison on CS-RBFs and Other

RBFs

In this section we examine the performance of the CS-RBFs and compare it to MQ and
thin plate splines. We also notice that the condition numbers of CS-RBFs are quite high
when the scaling factor becomes large. We consider the following benchmark problem
[37]:

∆u(x, y) = −5π2

4
sinπx cos

πy

2
, in Ω, (73)

u(x, y) = sinπx cos
πy

2
, on ∂Ω. (74)

where Ω = [0, 1]2\[0.5, 1]2 which is three-quarters of the unit square. The exact solution
is given by u(x, y) = sinπx cos πy2 .

Here we choose 81 evenly distributed collocation points in Ω̄. For the basis functions,
we choose the 3rd order CS-RBFs with scaling factor α = 1.2, the MQ with shape
parameter c = 0.8 and the 3rd order polyharmonic spline r6 log r. In the MFS, we use
16 evenly distributed points on the boundary ∂Ω and same number of source points on
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a circle with center at (0.5, 0.5) and radius 5. In the following figures, the contour plots
of the solution u and velocity field ∇u are plotted on the left and the contour plot of
the solution and the distribution of absolute errors are plotted on the right. As far as
the accuracy is concerned, MQ and 3rd order polyharmonic splines are comparable. As
expected, CS-RBFs can’t compete with global functions in accuracy. However, the CS-
RBFs provide the flexibility of choosing the local support and thus offer the possibility
of solving large scale problems.

The condition number of the 3rd order CS-RBF, MQ and 3rd order polyharmonic
splines are 9.76 × 105, 1.33 × 107 and 6.38 × 107.
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Figure 13: The 3rd order CS-RBFs with α = 1.2: contour plot of the solution and
velocity field (Left) and contour plot of the solution and error distribution (Right).
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Figure 14: MQ with c = 0.8: contour plot of the solution and velocity field (Left) and
contour plot of the solution and error distribution (Right).

In general, the globally defined RBFs are better than CS-RBFs in terms of accuracy.
For CS-RBFs, as shown in Sections 6.1 and 6.2, we also demonstrated that larger support
normally resulted in better accuracy using CS-RBFs. We will show that the above
perception is not necessarily true at least for the following type of problem which contains
sharp spikes in the right-hand side.
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Figure 15: The 3rd order polyharmonic splines: contour plot of the solution and velocity
field (Left) and contour plot of the solution and error distribution (Right).

We consider the following Poisson problem

∆u =
−4a2 + 3a

√

x2 + y2 − (x2 + y2)
(

√

x2 + y2 − a
)3 , (x, y) ∈ Ω, (75)

u =
(x2 + y2)

a−
√

x2 + y2
, (x, y) ∈ ∂Ω, (76)

where Ω ∪ ∂Ω = [0, 1]2. The exact solution of (75)-(76) is given by

u(x, y) =
(x2 + y2)

a−
√

x2 + y2
. (77)

The right-hand side of (75) presents a singularity at the coner (1, 1) when a =
√

2. To
demonstrate the effectiveness of the CS-RBFs in approximating sharp spike functions,
we chose to test the cases a = 1.5 and 1.6. The profiles of the right-hand side of (75) and
the exact solution for a = 1.5 are shown in Figure 16 in which the range of the right-hand
side is [8/3, 7343]. For a = 1.6, the range of the right-hand side is [8/3, 850]. The stiffness
for the case of a = 1.6 greatly declines but a sharp spike is still present. It is obvious
that the problem is much easier to handle for the case a = 1.6 than a = 1.5.

First, we chose 400 uniformly distributed random points to interpolate the right-hand
side and evaluated the L∞ norm at 400 even grid points. We chose ϕ = (1 − r)4+ (4r + 1)
as the basis function to approximate the right-hand side. In Table 14, we observe that
for a = 1.5 the results are much less satisfactory than for a = 1.6. Next, we use the
400 regular grid points as interpolation points and compute the L∞ norm at 400 random
points. In Table 15, we see that there is an improvement in accuracy for the case a = 1.6,
but no effect for the case a = 1.5. Furthermore, one also sees that increasing the support
α does not really improve the accuracy as we may have expected.

One quick way to improve the performance for the case a = 1.5 is to redistribute
the interpolation points. Since we know that the spike is known to exist near (1, 1)
and the absolute minimum occurs at (0, 0), we propose to enhance the interpolation
points in the regions near these two points as shown in Figure 17. Note that one should
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Figure 16: The profiles of the forcing term (left) and exact solution (right).

α 0.2 0.3 0.4 0.5 0.6 0.7 0.8
L∞(a = 1.5) 0.227 0.267 0.236 0.236 0.236 0.167 0.205
L∞(a = 1.6) 0.0313 0.0220 0.0125 0.0116 0.0160 0.0121 0.00816

Table 14: L∞ norm errors using random interpolation points.

be cautious in deploying these points. Too many points deployed in a small region may
cause serious ill-conditioning problem, while few additional enhanced points will not have
enough effect to capture the special feature of the spike and thus be less effective. For
Test 1, 60 additional points were distributed in each of the enhanced regions [0, 0.3]2 and
[0.8, 1.0]2. For Test 2, only 30 additional points each were distributed in smaller regions
[0, 0.3]2 and [0.9, 1.0]2. In Table 16, we show the numerical results of these tests. The
overall profile of absolute maximum errors for Test 2 with α = 0.5 is shown in Figure 18.
Comparing results in Table 14 and Table 16, it is clear that the accuracy can be improved
by simply redistributing the interpolation points in a certain fashion. With little effort,
the improvement of the accuracy is about one order of magnitude. In Table 16, we also
observe that the increase of the support does not necessarily improve the accuracy for
α > 0.5.

We also remark that we have tested several globally defined RBFs for this problem
and all of them produced unacceptable errors. When the sharp spike in f(x, y) is even
larger such as the case for a = 1.46 (f(1, 1) = 45133), the effort of just enhancing
interpolation points in particular regions as discussed above in not enough. We are
currently investigating other near singular nonhomogeneous problems by removing the
sharp spikes before we use CS-RBFs to approximate the right-hand side. We will present

α 0.2 0.3 0.4 0.5 0.6 0.7 0.8
L∞(a = 1.5) 0.594 0.417 0.250 0.167 0.241 0.236 0.166
L∞(a = 1.6) 0.0335 0.0155 0.0161 0.00624 0.00515 0.00580 0.00575

Table 15: L∞ norm errors using regular grid points.
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Figure 17: The profiles of distributing points in Test 1 (left) and in Test 2 (right).
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Figure 18: Profile of overall L∞ norm errors with a = 1.5, α = 0.5.

our results in forthcoming papers.

10 Time-Dependent Problems

In this section we show how a number of second order time-dependent partial differential
equations can be solved numerically by reformulating them in terms of a sequence
of inhomogeneous modified Helmholtz equations. Recently, due to the availability of
the analytic particular solution of the modified Helmholtz equation using polyharmonic
splines, such an approach has been implemented in the context of the DRM for effectively
solving time-dependent problems [25, 39]. In the past, the analytic particular solutions for
Helmholtz-type equations using CS-RBFs were only available for 3D case and have never
been implemented in time-dependent problems. Using our new approach for evaluating
particular solutions given in Section 6.5, it becomes possible to solve time-dependent
problems using CS-RBFs in 2D. We will briefly outline the solution process and report
our preliminary results in the following subsections.
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L∞(a = 1.5) L∞(a = 1.6)
α Test 1 Test 2 Test 1 Test 2
0.2 2.56E − 1 1.42E − 1 4.52E − 2 1.13E − 1
0.3 1.26E − 1 5.56E − 2 1.15E − 2 1.01E − 2
0.4 4.46E − 2 3.39E − 2 4.93E − 3 1.01E − 2
0.5 2.93E − 2 5.27E − 2 2.68E − 3 7.50E − 3
0.6 1.42E − 1 9.14E − 2 6.09E − 3 2.15E − 3
0.7 6.28E − 2 8.72E − 2 4.89E − 3 2.44E − 3
0.8 8.09E − 2 8.42E − 2 3.53E − 3 1.91E − 3

Table 16: L∞ norm errors for Test 1 and Test 2.

10.1 The diffusion equation

Let us first consider boundary value problems for the diffusion equation

∆u(x, t) − ut(x, t) = f(x, t), x ∈ Ω ⊆ IRd, d = 2, 3, (78)

where Ω is a bounded domain in IRd, d = 2, 3. Without loss of generality, we assume
Dirichlet boundary conditions

u(x, t) = g(x, t), x ∈ ∂Ω, t > 0 (79)

and the initial condition
u(x, 0) = h(x), x ∈ Ω. (80)

To solve (78)-(80) numerically, two approaches are considered: (i) taking the Laplace
transforms in ‘t’ [8, 53] and (ii) finite differencing in ‘t’ [6]. Defining the Laplace transform

U(x, s) =

∫ ∞

0

e−stu(x, t)dt, s > M (81)

and applying (81) to (78)-(80) U satisfies the boundary value problem

∆U(x, s) − sU(x, s) = f̃(x, s) − h(x) ≡ m(x, s), x ∈ Ω, (82)

U(x, s) = g̃(x, s), x ∈ ∂Ω, (83)

where f̃ and g̃ are Laplace transform of f and g respectively. If m(x, s) 6= 0, then (82) is
an inhomogeneous modified Helmholtz equation and can be solved using the algorithm
in Section 6.5.

Because numerical inversion of the Laplace transform is an ill-posed problem, the
above algorithm may not be effective for all problems. Alternatively, one can proceed
by using finite difference schemes in time. A popular class of methods for doing this are
the θ-methods, defined as follows [6]: let τ > 0 and define the mesh tn = nτ, n ≥ 0. For
tn ≤ t ≤ tn+1, approximate u(x, t) by (0 ≤ θ ≤ 1)

u(x, t) ≃ θu(x, tn+1) + (1 − θ)u(x, tn) (84)

so that
∆u(x, t) ≃ θ∆u(x, tn+1) + (1 − θ)∆u(x, tn) (85)
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and

ut(x, t) ≃
u(x, tn+1) − u(x, tn)

τ
. (86)

substituting (85)-(86) in (78) and denoting the resulting approximation to u(x, tn) ≡
un(x) by vn(x), one obtains

θ∆vn+1 + (1 − θ)∆vn − (vn+1 − vn)

τ
= fn (87)

so that (fn ≡ f(x, tn))

∆vn+1 −
vn+1

θτ
=

−vn
θτ

− (1 − θ)∆vn
θ

+
fn
θ
. (88)

For θ = 1, we get the backward difference scheme [6]

∆vn+1 −
vn+1

τ
=

−vn
τ

+ fn (89)

and for θ = 1/2, we get the Crank-Nicholson scheme

∆vn+1 −
2vn+1

τ
=

−2vn
τ

− ∆vn + 2fn. (90)

One may now observe that (88) is a sequence of inhomogeneous modified Helmholtz
equations which can be solved using v0 = h and the boundary conditions vn(x) =
g(x, tn), x ∈ ∂Ω. As before, vn+1 can be determined using the MFS once the right hand
side of (88) is known. Particular solutions can then be determined using CS-RBFs which
is discussed in detail in Section 6.

10.2 The wave equation

Similarly, the wave equation can be reformulated in a similar fashion as the heat equation.
Here, we consider the IBVP

∆u(x, t) = utt(x, t), x ∈ Ω, t > 0, (91)

u(x, 0) = u0, ut(x, 0) = v0, (92)

with Dirichlet boundary conditions

u(0, t) = g(x, t), x ∈ ∂Ω, t > 0. (93)

If one takes the Laplace transform of (91), then the Laplace transform U of u satisfies

∆U(x, s) = sU(x, s) − su0 − v0, x ∈ Ω, (94)

U(x, s) = g̃(x, s) x ∈ ∂Ω. (95)

From (94) we see that U satisfies an inhomogeneous modified Helmholtz equation so the
determination of U proceeds as for the diffusion equation. To obtain an approximation
in ‘t’ one needs to invert the numerical approximation to U.

To avoid transform inversion problems one can resort to time-differencing, as for the
diffusion equation. Generalizing the approach of Su and Tabarrok [46], one can define
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a class of θ algorithms as follows: approximate utt by the central difference formula
(un ≡ u(x, tn))

utt ≃
un+1 − 2un + un−1

τ2
(96)

and
(∆u)n ≃ θ (∆u)n+1 + (1 − θ) (∆u)n−1 . (97)

Substituting (96) and (97) into (91) and denoting the resulting approximation to un by
vn, it satisfies

θ∆vn+1 −
vn+1

τ2
=
vn−1 − 2vn

τ2
+ (1 − θ)∆vn−1. (98)

For θ = 1/2 we get a second order accurate Crank-Nicholson scheme [46].
Again we see for θ 6= 0 that vn satisfies a sequence of inhomogeneous Helmholtz

equations which can be solved in the same fashion as for the diffusion equation.
Other types of time-dependent problems can also be reformulated in a similar fashion

as the previous two cases. The research in time-dependent problems using CS-RBFs in
the context of the DRM is still not available.

Example 10 Consider the heat equations in (78)-(80) where f(x, y, t) = 0 and g(x, y, t)
and h(x, y) are chosen in a way such that the exact solution u(x, t) is given by

u(x, y, t) =
1

4π(t+ 0.1)
exp

(

− (x2 + y2)

4(t+ 0.1)

)

. (98)

The solution domain Ω is an ellipse with major axis 3 and minor axis 1. For the time
difference scheme, we chose θ = 1 in (88) and τ = 0.01. We also choose the particular
solution and interpolation function as shown in Section 6.5 for modified Helmholtz equa-
tion. We used a fixed scaling factor α = 1.5. In the interpolation of the inhomogeneous
term at each time step, we generated 300 quasi-random points as we have done previ-
ously. For the MFS, 40 collocation points were evenly placed on the boundary ∂Ω and an
equal number of source points are placed on the fictitious boundary of a circle with radius
9 and center (0, 0). At each time step, the solution u at each interpolation point has to
be evaluated, then they are used to interpolate the right hand side of (89). The following
table shows the solution at (0, 0).

Time Exact Sol. Abs. Error Time Exact Sol. Abs. Error

0.2 0.2653 0.2939E-02 1.2 0.06121 0.3466E-02
0.4 0.1592 0.3567E-02 1.4 0.05305 0.2617E-02
0.6 0.1137 0.4653E-02 1.6 0.04681 0.1801E-02
0.8 0.08842 0.4762E-02 1.8 0.04188 0.1060E-02
1.0 0.07234 0.4249E-02 2.0 0.03789 0.4038E-03

Table 17: Maximum absolute errors at various time steps at point (0, 0).
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11 Conclusions

In this article, we have surveyed the research work on CS-RBFs since they first appeared
in the BEM literature and made a number of proposals and new directions for future
research. Coupled with the MFS, we have actually achieved a meshless method for
solving partial differential equations. The methodology described in this article provides a
solid mathematical foundation and is especially attractive for solving higher dimensional,
complicated geometrical and large scale problems efficiently. The method is ready to take
on the challenge for solving more applied problems such as the Navier-Stokes equation,
moving boundary value problems, etc. Furthermore, we also provide some preliminary
new results of our current research work. We encourage interested readers to further
investigate and develop practical numerical schemes for solving large scale industry
problems.
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