
Remarks on Meshless Loal Constrution ofSurfaesRobert ShabakMarh 27, 2000AbstratThis ontribution deals with tehniques for the onstrution of surfaesfrom N given data at irregularly distributed loations. Suh methodsshould ideally have the properties� omputational eÆieny,� smoothness of the resulting surfae, if required, and� quality of reprodution,but these goals turn out to be hard to meet by a single algorithm. Methodsare split into a single onstrution or prealulation part and subsequentpointwise evaluations. Both parts are analyzed with respet to their om-plexity. It turns out that one has to expet the main workload on the sideof geometri subproblems rather than within numerial tehniques. Fur-thermore, if exat reonstrution at the data loations is required, andif the user wants to avoid solving non{loal linear systems, there is noway around loalized Langrange{type interpolation formulae. Thus twoinstanes of suh tehniques are studied in some detail:� interpolation by weighted loal Lagrangians based on radial basisfuntions and� moving least squares.While the former is muh more simple than the latter, it still has somede�ienies in theory and pratie. Moving least squares, if equippedwith ertain additional features, turn out to be widely satisfatory, evenin diÆult ases.1 IntrodutionIgnoring more general and more subtle de�nitions, we onsider surfaes here assets Y of points y 2 IR3 that are either� impliitly represented via an equation g(y) = 1 for a salar funtion g onIR3 or 1



1 INTRODUCTION 2� expliitly represented as images y = F (x) of a funtion F de�ned on asubset 
 of IR2 alled the parameter domain.Impliit representations have the advantage that one an often de�ne a bodywith surfae Y as the set of points y with g(y) � 1, while all points with g(y) > 1are \outside". This feature is very onvenient for ray traing algorithms, beauseone has a quik test for points y on the ray for being inside or outside the body.The transition between impliit and expliit representations of the same surfaeis a diÆult problem that we ignore here. An expliit representation is allednonparametri, if the de�ning map F has the simple form F (x) = (x; f(x)) witha salar funtion f on 
.We fous on the onstrution of surfaes from given data. These an ome indi�erent forms. The most standard ase is quantitative point data as� a set fy1; : : : ; yNg � IR3 of points on (or near) the surfae, or� a set X = fx1; : : : ; xNg � 
 � IR2 together with a set fy1; : : : ; yNg � IR3suh that yj = F (xj) for all j; 1 � j � N , either exatly or approximately.Again, the nonparametri setting speializes to the ase yj = (xj ; f(xj)); 1 �j � N . In general, derivative values an be spei�ed, but we skip over suhextensions here. More serious are qualitative data like \smoothness", \goodshape" or whatever the user may presribe. Here, we ignore everything ex-ept smoothness, and we shall restrit the latter to the lassial mathematialde�nition.The onstrution of expliit representations of surfaes from data of the formyj = F (xj) an learly be done by any multivariate vetor{valued sattereddata interpolation or approximation tehnique. This will be the main topiof this paper. But before that, and for ompleteness, we want to point at thespei� problems oming up in the ase of unstrutured data fy1; : : : ; yNg � IR3.Imagine 8 data points to be given, forming the verties of the unit ube in IR3.Whatever method is used to �nd a surfae ontaining these points, there is anintrinsi ambiguity, desribed by the following possible solutions:1. A losed, bounded and onneted surfae, e.g. a sphere,2. three solutions onsisting of two onneted omponents, eah piking upthe four points of opposite faets, e.g. two parallel planes,3. twelve di�erent U{shaped solutions formed by piking up the verties ofa hain of three adjaent faets.This ambiguity even onerns the global topologial struture of the solution,and the arising problem is muh more serious than �nding a numerial methodthat atually onstruts some surfae ontaining the data points. For instane,given an arbitrary multivariate salar{valued interpolation tehnique for sat-tered data, one an easily onstrut a funtion g on IR3 suh that g(yj) = 1 for



2 CONSTRUCTION, EVALUATION AND COMPLEXITY 3all j. Now, exept for ertain degenerations, the set of points y with g(y) = 1will de�ne a surfae that piks up the given data, but it is not lear how themethod behaves in situations like the one above. In priniple, it also does nothelp to do a loal triangulation �rst, beause the same problem arises with thetriangulation. We leave this interesting area to future researh.2 Constrution, Evaluation and ComplexityFor the rest of this paper, we fous on onstruting expliit representations ofsurfaes from given data in the form yj = F (xj); 1 � j � N for some unknownfuntion F . In many ases, the atual and �nal evaluation of surfae points willnot be based on the given data, but rather on some intermediate data needed forthe representation. For instane, many CAD pakages evaluate surfaes fromBernstein{B�ezier ontrol nets, and then these nets form the intermediate datafor the representation. We thus split the proess inInput data Constrution�! Representation data Evaluation�! Surfae points:The onstrution step an ontain some data redution. Typial ases are pro-vided by the lower levels of hierarhial or multilevel shemes for representingsurfaes (see [35℄ for example), or by greedy methods like [32℄. We do not on-sider suh methods here. There are also ases where the intermediate data aremuh larger than the original data. We mentioned an example at the beginningof this setion.The onstrution step will often be muh more omplex than the evaluationstep, but the evaluation usually has to be performed many times. This is whyit is prohibitive to have an O(N) omplexity of evaluation. But if evaluation ata point x is to be done a O(1) ost and reasonable quality, one needs at leastsome geometri information about data near to x. This geometri part of thereonstrution proess turns out to be muh more important than expeted, andwe onjeture the following:In the development of eÆient tehniques for reonstrution of multivari-ate funtions (or surfaes, in partiular), the major omputational om-plexity lies within the geometri algorithms, not the numerial tehniques.This fat should have been widely reognized in the past, but the sienti� fousstill is very muh on the side of Numerial Analysis than on ComputationalGeometry. For instane, in any ase of univariate spline interpolation, we needfor eah evaluation point x the smallest knot interval [xj ; xj+1℄ ontaining x.This is what we alled a \geometri" information above. A naive way gettingthis information is to use a sorting algorithm at ost O(N logN) within theonstrution step, followed by an O(logN) searh within eah evaluation. Theatual numerial onstrution step via solving a banded system will take O(N)operations, while the numerial evaluation is of O(1) omplexity for a �xed



3 EFFICIENT GEOMETRIC ALGORITHMS 4degree. Our statement is valid already in this simple example, but things willnaturally be worse in the multivariate ase. This is why we deal with geometriissues in the next setion.To �x our eÆieny goals somewhat more preisely, let us look at the relativeomputational omplexity of onstrution and evaluation of surfaes, providedthat N data are given.� We onsider a onstrution tehnique to be eÆient, if it produes O(N)intermediate data at a omputational ost of O(N) operations for a �xedauray requirement. This will rule out prealulations involving trian-gulations, sorting methods, or full{size linear systems, and it will normallyrequire some additional assumptions on the geometry of the data.� We onsider an evaluation tehnique to be eÆient, if it takes O(1) oper-ations to evaluate the surfae at a single point. This rules out all nonloalmethods, methods based on the evaluation of sums with more than O(1)terms, or methods that require nontrivial searh tehniques for eah eval-uation.The rest of the paper is onentrating on tehniques that at least promise tomeet these goals, together with the ability to yield surfaes of any presribedsmoothness. The reader will wonder how and why we drop the additional logNomplexity fator that already arises in univariate spline algorithms. But weshall show below that this is justi�ed for \reasonable" data geometries, and inthe univariate ase it turns out that this is possible whenever there is an upperbound � on the mesh ratio max1�j<N jxj+1 � xj jmin1�j<N jxj+1 � xj j :3 EÆient Geometri AlgorithmsIf there are no additional assumptions on the data loations, any geometrialgorithm with a omplexity of O(N logN) within the onstrution step andO(logN) for eah evaluation must be onsidered to be eÆient, as we are taughtby univariate spline theory. But if the set X = fx1; : : : ; xNg � 
 � IR2 of dataloations is not too badly distributed, we hope to get away with O(N) andO(1), respetively. The �rst basi idea is to assume quasi{uniformity of thedata loations xj ; 1 � j � N on a bounded domain 
 whih at least ontainsthe onvex hull of the data. This property requires that the quotient of the �lldistane h := h(X;
) := maxy2
 minxj2X ky � xjk2 (1)



3 EFFICIENT GEOMETRIC ALGORITHMS 5and the separation distaneq := q(X) := 12 minxj 6=xk2X kxj � xkk2 � h(X;
)is bounded above by a onstant � > 1.The seond basi idea is to ignore sorting and triangulations in favour of thek nearest neighbor problem. The goal is to do some geometri preproessingat O(N) ost suh that for every given evaluation point x it takes only O(k)operations to get the k nearest neigbours from the data set X .The standard folklore reipe, desribed in d dimensions here, implements a spaedeomposition tehnique like those used in Computer Graphis. By a �rst O(N)san over the given N data loations, a bounding box for the whole data setis onstruted, de�ned by maximal and minimal oordinates. Then there areseveral possible strategies for splitting the global box into O(N) smaller boxes,hopefully ontaining only O(1) data points eah.A standard grid{type deomposition of the global bounding box does the jobfor quasi{uniform data sets. To see this, let us �rst prove that h�d; q�d, and Nhave the same asymptotis for N !1. In fat, sine eah data point has a ballof radius q around it suh that the ball does not ontain any other data point,these balls are disjoint and the sum of their volumes must be bounded aboveby a onstant. Thus N = O(q�d). On the other hand, the union of the balls ofradius h around the data points must over the domain 
, and thus the sum oftheir values is bounded below by a onstant, proving h�d = O(N).Now let nB be the maximum number of data points in eah box. The balls ofradius q around these points will be disjoint and ontained in the box of volumeO(1=N) = O(qd) plus a surrounding volume that an be bounded by O(qd),too. Therefore nB is bounded above by a onstant.If the data distribution is not quasi{uniform, a deomposition via median splitsinto a binary tree of boxes will work at the prie of O(N logN) operations. Weprefer the former ase and suggest to drop exess points of lusters, keepingthe number of points in eah grid box at O(1) by brute fore. The treatmentof details of surfaes related to data lusters an always be postponed to aseond problem, working loally at a �ner sale, and having the residuals of the�rst step as input data. As a byprodut, the above strategy provides a simple\thinning" algorithm along the lines of papers by Floater and Iske [13, 14, 15℄.Anyway, it takes O(N) or O(N logN) operations to distribute the given N datainto O(N) boxes with O(1) points in eah box. For any given point x, it takesO(1) operations to �nd the box ontaining x, if the data are quasi{uniform. Inthe general ase, however, one has to go down the binary tree at O(logN) ost.



4 LOCALIZATION AND OVERSAMPLING 6The basi data struture will onsist of a list of point indies for eah box. Theimplementation of suh a struture an use standard tehniques from sparsematries. To ope with alloation problems, we prefer to use a seond sanover all data points that just ounts the number of points in eah box. Thenalloation an be done one and preisely, and the atual plaement of pointsinto the orret boxes is done by a third san over all data points. The overallstorage requirement is O(N).Sine the number of points in eah box is O(1), one an then easily use the datastruture to solve nearest neighbour problems for any point x with a omplexityof O(k) (in the quasi{uniform ase, or O(k logN) in general) for a �xed numberk of required neighbours of a point x. The idea is to go into the box of x �rstand then into all neighbouring boxes with inreasing distane, piking up allthe data points in those boxes. Whenever one has �nished the boxes overinga full ball of radius r around x, one an be sure that at least all neighbours ofx at distane at most r are found. The proess is stopped if one has found atleast k suh points, and these are then sorted with respet to their distane tox. No more that O(kd) = O(1) boxes need to be heked in the quasi{uniformase, beause the k nearest neighbours annot be further away from x thanh+ 2(k � 1)q.Note that a univariate simpli�ation of this algorithm allows to sortN real num-bers in O(N) operations, provided that they are quasi{uniformly distributed ina bounded interval. Suh algorithms are alled \sorting by distribution", andtheir prototype is the well-known radix sort. Furthermore, a subsequent searhalgorithm an then be implemented at O(1) ost.Methods for onstruting good triangulations will ost at least O(N logN) op-erations in the two{dimensional ase, but they work for general point distri-butions. Whether they an be redued to O(N) omputational omplexity forquasi{uniform data, is beyond the knowledge of the author.4 Loalization and OversamplingWe now go bak to numerial tehniques and introdue some more notation. Ifboth the alulation and the evaluation step are linear, one an writebk = NX̀=1 �k`y`; 1 � k �MF (x) = MXk=1 uk(x)bk (2)with ertain evaluation funtions uk and intermediate data bk; 1 � k � M ,starting from input data y` at x` for 1 � ` � N . The number M an be muhlarger that N , and the index k of intermediate data bk and basis funtions uk



4 LOCALIZATION AND OVERSAMPLING 7need not have any relation to the index ` of the data. For example, if we de�nethe uk as basis funtions of some �nite element spae or as Bernstein{B�ezieror NURBS basis funtions with respet to some representation of the surfaeby many standard pathes, we require the intermediate data to be nodal datafor �nite elements or to be ontrol points with respet to the various standardsurfae pathes. In suh a ase, the value of M is muh larger than N , and itmay be not at all obvious that the onstruted surfae has suÆient smoothness,unless ertain linear equations for the ontrol points bk are satis�ed. We wantto ignore the \pathing problem" in this ontribution, but we shall see laterhow it arises unexpetedly.The resulting surfae mapping isF (x) = MXk=1 uk(x) NX̀=1 �k`y`= NX̀=1 y` MXk=1 uk(x)�k`= NX̀=1 y`L`(x); (3)
and the �nal form uses Lagrange{type funtionsL`(x) := MXk=1 uk(x)�k`; 1 � ` � Nthat have to satisfy L`(xj) = Æj` if exat reprodution of the data is required.In priniple, one ould �x the evaluation funtions uk beforehand, dependingon the �nal appliation, and maybe even in a very onvenient loal form, via�nite elements, biubi spline pathes or NURBS. The matrix B with entries�k` should then be a one{sided inverse to the matrix U with entries uk(xj).For M � N , and if U has full rank N , the determination of suh an inverse ispossible in theory, but we already mentioned the additional onditions on theintermediate data that will be required to guarantee smoothness, if the uk arenot automatially smooth enough.At this point, the reader should have understood why we do not want to getinto serious trouble with smoothness onditions de�ned indiretly via additionalonditions on the intermediate data. We restrit ourselves to ases where thefuntions uk or L` have the required smoothness, and then we are free to �ndonvenient linear mappings to generate the intermediate data we need.But there is an important point to be noted at this stage. If we want to makeboth steps loal and arry them out as they are in (2), i.e. without reformulation



4 LOCALIZATION AND OVERSAMPLING 8of the �rst equation as a linear system for the bk, the matries U and B shouldbe sparse, and at the same time be one{sided inverses of eah other. This is avery serious obstale. In general, matries with a �xed, but irreduible sparsitystruture an have full inverses, if perturbations of the matrix entries are allowed([8℄, p. 271). This rules out the ase M = N exept for the standard situationU = I that we analyze below. For M >> N the hanes are better, but thereare just a few results on suh \oversampling" tehniques. Roughly speaking,the above argument amounts to the following:If loality or sparsity of both the onstrution and the evaluation proessfor exat reonstrution of surfaes from parametri data is required, andif both steps are arried out by linear formulae without solving linearsystems, one has to do oversampling or to stik to a variation of Lagrangeinterpolation.We refrain from asting this guideline into the shape of a theorem, but we shallfollow it throughout the paper.For M = N , most of the well{known U matries (e.g. from splines or radialbasis funtions) are non{sparse. Note that they are the inverses of the (possiblysparse) matries of the linear systems for alulating the intermediate data.The pitfall of the above priniple is avoided by not using the inverses as linearmappings. Instead, one solves the (possibly sparse) linear systems.Let us desribe a univariate example. Imagine a standard salar univariateinterpolation problem with data yj = f(xj); 1 � j � N for nodes x1 < x2 <: : : < xN . We already used this example for pointing at the bulk of work induedby generating the neessary geometri information. We now fous on numerialtehniques for onstrution of intermediate data and evaluation. Linear splineshave a Lagrange formulation without any onstrution step. This follows theabove priniple via loal Lagrange interpolation. Splines of higher degree areusually treated via a nonloal onstrution step involving a sparse system witha non{sparse inverse. This follows the priniple by resorting to solving a system.There is no loal formula that allows irumvention of solving a system in ase ofM = N and higher{degree splines. This is what the above priniple enfores, ifneither Lagrange interpolation, nor solving a system, nor oversampling is done.But oversampling an possibly avoid both the nonloal evaluation and the linearsystem. In fat, if suÆiently many derivatives at the knots are approximatedusing the point data by any of the standard tehniques, and if pieewise odd{degree Hermite interpolation is done on the oversampled data, we get awaywithout any system, using loal onstrution and evaluation.The general trik is to use oversampling in suh a way that suÆiently manyloal intermediate data are onstruted, suh that a subsequent loal onstru-tion step �nds all the data it needs. Finding good multivariate oversamplingstrategies is a major open problem. But note that the example also shows thatwe are bak to a situation that we did not want to pursue here: the introdution



5 LOCAL LAGRANGE INTERPOLATION 9of the \pathing problem" through the bak door via oversampling. This is easyin the univariate ase, but serious in multivariate settings. We lose this setionwith the remark that there may be sparse approximate inverses. Examples arein [34℄. Transition from interpolation to approximation will thus be anotherfeasible workaround, but note that in this ontext approximation oinides withquasi{interpolation.5 Loal Lagrange InterpolationLet us go bak to interpolation and onsider the simple ase U = I implied byLagrange interpolation on the original data, and look at loalized tehniques.In suh a situation there are no intermediate data, and there is no preproessingrequired and no system to be solved. On the downside, we now need Lagrange{type evaluation funtions whih have a presribed global smoothness and aheap O(1) loal evaluation. Suh funtions do exist, but the rae for pratiallygood funtions is open. The early Shepard{type tehniques were nonloal, andtheir loalized extensions were nonsmooth. On the other hand, any suÆientlysmooth and suÆiently loalized peak funtion uk whih is one at xk will do thejob, but at the prie of a useless resulting surfae, looking like a bed of nails.The approximation quality omes in as a third riterion, besides smoothnessand omputational omplexity.But there are simple and heap methods that do better than loalized peaks. Agood lass of methods with limited smoothness is provided by natural neighbouroordinates. Originally due to Sibson [36, 37℄ as a method yielding a ontinuoussurfae, there was an extension by Farin [11℄ to a ontinuously di�erentiableinterpolant. If implemented naively, natural neighbour oordinates require apreproessed Dirihlet tesselation at a ost of at leastO(N logN), whih violatesour eÆieny goals. If a preproessing at O(N) is done for solving the k nearestneighbour problem as desribed in setion 3, one an possibly alulate thenatural neighbour oordinates loally within eah evaluation step, getting aO(1) ost per evaluation. But sine smoothness is limited, we do not pursuenatural neighbour tehniques in this paper.Let us desribe a rather general reipe for alulating smooth loal interpolants.Around any of the data points xj 2 
 we onsider a ball Br(xj) of some �xedradius r > 0. Then we take all points xk in this ball and onstrut a loalLagrange funtion Lloj with respet to these points by an arbitrary method forloal sattered data interpolation, provided that the solution has the requiredsmoothness. Thus we haveLloj (xk) = Æjk for all xk with kxj � xkk < r; 1 � j; k � N;but we annot use these funtions globally, beause they fail to work on far{awaypoints. But there is an easy remedy. Take any nonnegative salar funtion w on



6 RADIAL BASIS FUNCTIONS 10IR with w(0) = 1 and support [�r; r℄ suh that w(kx � xjk2) has the requiredsmoothness. Then Lj(x) := Lloj (x)w(kx � xjk2) (4)will be a global Lagrange funtion, and the surfae onstrution an proeedvia (3). Note that this reipe allows for a wide range of possible ases, andthe ontest for good examples is open. We shall show some ases after we havedesribed how to solve the loal sattered data interpolation problems.If the data distribution is quasi{uniform, the alulation of a loal Lagrangianfuntion at xj will require only O(1) operations. Prealulation of all La-grangians an be done at O(N) omplexity, and loal evaluation at a singlepoint x will only require O(1) Lagrangians. Thus we have an eÆient methodin the sense of setion 2, independent of the type of loal interpolation used.The rae for ases with good reprodution qualities is open.6 Radial Basis FuntionsNow it is time to expliitly desribe the tools we want to use for loal inter-polation to sattered data. The presentation an be brief, beause there aremany survey artiles on the subjet (in hronologial order: [17, 16, 9, 23, 10,19, 25, 7, 30, 34℄). By a fundamental observation of Mairhuber [20℄, nontrivialspaes for multivariate sattered data interpolation must neessarily depend onthe data loations. To make this dependene as simple as possible, one usesfuntions of the forms(x) = NXj=1 �j�(kx� xjk2) + QXi=1 �ipi(x)0 = NXj=1 �jpi(xj); 1 � i � Q (5)with a radial basis funtion � on [0;1) and a basis p1; : : : ; pQ of the spaeIPm of bivariate polynomials of degree up to m � 1, where Q = m(m + 1)=2.The funtion � and the number m are related by the requirement that � mustbe (stritly) onditionally positive de�nite of some order m0 � m, and thisproperty makes sure that the systemss(xk) = NXj=1 �j�(kxk � xjk2) + QXi=1 �ipi(xk) = yk; 1 � k � N0 = NXj=1 �jpi(xj); 1 � i � Q (6)arising for arbitrary sattered data problems are uniquely solvable, if there isno nontrivial polynomial in IPm;m � m0; that vanishes at all data loations



7 GLOBAL INTERPOLATION BY RADIAL BASIS FUNCTIONS 11x1; : : : ; xN . The oeÆients �j and �i are salars in the ase of nonparamet-ri data, and vetors in the general ase. We shall ignore this in the sequel,restriting ourselves to the salar ase without loss of generality.The most prominent examples of radial basis funtions are�(r) = r� ; � > 0; � 62 2IN0; m0 = d�=2e�(r) = r2k log(r); k 2 IN (thin-plate splines) m0 = k + 1�(r) = (2 + r2)� ; � < 0; (inverse multiquadris) m0 = 0�(r) = (2 + r2)� ; � > 0; � 62 IN0 (multiquadris) m0 = d�e�(r) = e��r2 ; � > 0 (Gaussians) m0 = 0�(r) = (1� r)4+(1 + 4r) m0 = 0together with their ordersm0 of onditional positive de�niteness. A omprehen-sive presentation of these funtions together with full proofs of their fundamentalproperties is in [33℄.Note that in the ontext of setion 2 we have representation data onsisting oftwo vetors � 2 IRN ; � 2 IRQ, whih already is a weak form of oversampling inase of Q > 0. But, exept for trivial hoies of saling, the system (6) has nosparse inverse, even if a ompatly supported funtion like (1 � r)4+(1 + 4r) isused. The latter funtion is C2 on R2 when written as a radial funtion of twovariables, and it an at as a weight funtion in (4). Other reasonable weightfuntions arewÆ;k(r) =8<: 1 r � 1� ÆÆ�2k(1� r)k(r � (1� 2Æ))k 1� Æ < r � 10 r > 1 (7)for Æ 2 (0; 1) and k > 0, yielding presribed degrees of smoothness.7 Global Interpolation by Radial Basis Fun-tionsWe do not onsider global solutions of large{sale sattered data interpolationproblems in detail here. For ompleteness, we only point out the two urrentlines of researh and mark their fundamental di�erenes. The starting pointis the behaviour of radial basis funtion interpolants with respet to saling.It is a standard tehnique, arising already in �nite elements and being thebakground of the onvergene theory initiated by Strang and Fix [38℄, to salethe interpolants in a way that is proportional to the data density, using \narrow"basis funtions for dense data and \wide" basis funtions for oarse data. Forhistorial reasons this is alled a stationary setting, while the nonstationaryase uses the same radial basis funtion for all possible interpolation problems,irrespetive of the data density.



7 GLOBAL INTERPOLATION BY RADIAL BASIS FUNCTIONS 12Let us �rst look at omputational issues. In the stationary setting, the arisingmatries will have a ondition that is basially independent of the data den-sity. For ompatly supported basis funtions, the sparsity struture is �xedand the evaluation of approximants will be heap due to loalization. In thenonstationary setting the ondition will dramatially inrease when the dataget dense, beause rows and olumns of the system matrix tend to be more andmore similar. Furthermore, sparse matries arising from ompatly supportedradial basis funtions get �lled up, and the omplexity of evaluation inreases.But the situation is di�erent, if we look at approximation properties. In thenonstationary setting, all radial basis funtions have good approximation prop-erties whih are losely related to the numerial ondition: the better the ap-proximation properties, the worse the ondition [29℄. On the other hand, inthe stationary ase there is no onvergene for interpolation problems based onintegrable radial basis funtions [6℄, while thin{plate splines and multiquadrisshow good approximation properties. But the latter do not share the advantageof the stationary setting with respet to the matrix struture: the systems willalways be non{sparse.Thus there is no fully satisfying way out, if users look at problems on vary-ing sales. Using the stationary setting with global radial basis funtions likethin{plate splines, powers or multiquadris will ause no onvergene problems,but the user is fored to add strategies for dealing with large full matries anda ostly evaluation proess. The groups around M.J.D. Powell [26, 28℄ and R.Beatson [5, 3, 4, 2℄ have made great progress in this diretion. A seond ap-proah uses ompatly supported radial basis funtions and exploits sparsity asmuh as possible. If �ll{in is to be limited, one is bound to a stationary setting,but then there are problems getting good approximation quality, beause thereis no onvergene in theory. As long as the data are not too dense, the station-ary tehnique improves with data density, but there is a small �nal error levelthat annot be improved by adding more data. This phenomenon was alledapproximate approximation my Maz�ya and Shmidt [21℄, and it deserves furtherstudy. The approximation quality of the �nal level is mainly determined by theadmitted amount of �ll{in [31℄, but the natural way out of this is to go overto multisale tehniques [12, 13, 22℄ applying the steps of a stationary settingreursively to residuals. This is quite suessful, but still needs theoretial work.First steps are in [18℄.The method of setion 5, using loal weighted Lagrangians, avoids solving largesystems and guarantees loality without using ompatly supported basis fun-tions. Its properties will be disussed in the next setion.



8 LOCALWEIGHTED INTERPOLATIONBY RADIAL BASIS FUNCTIONS 138 Loal Weighted Interpolation by Radial BasisFuntionsLet us now look at some spei� ases, implementing the ut{o� Lagrangiantehnique of setion 5 via loal interpolants based on radial basis funtions fromsetion 6. For ease of publiation in printed form, we on�ne ourselves hereto simple 2D graphis and present muh more sophistiated 3D images at theonferene. It is a rather onvenient rule{of{thumb to use about 50 loal dataaround eah evaluation point, and thus we start in Figure 1 with presentinga one{dimensional ross{setion of the Lagrangian alulated via thin{platesplines and linear polynomials for 49 loal neigbours on a two{dimensional grid.These 49 neighbors are within a irle of radius 0.5 on a grid with spaing1/8, and thus the ross setion of the Lagrange funtion along an axis has 8symmetri zeros in [�0:5; 0:5℄, being regularly distributed at distane 1/8, ifzero is added. To see the behaviour outside [�0:5; 0:5℄, we replaed the valuesinside by zero to get the seond plot in Figure 1. The outside peaks have amaximum height of 0.000717, and this is a oarse upper bound of the relativedeviation between the global and loal Lagrangian. This unexpeted behaviourof thin{plate spline Lagrangians was �rst observed by Powell [24℄. The deayfor arguments tending to in�nity is exponential, and thus a weighted uto� doesno serious harm. In our �gures, we have not yet multiplied the loal Lagrangianwith a weight funtion, but we prefer to use weights that are equal to 1 for mostof [0; 1℄, beause otherwise the peak of the Lagrangian gets too sharp. A goodstrategy for the Lagrangian based on 49 points was (7) for Æ = 0:1.
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Figure 2: Contour PlotsMore sophistiated examples reveal that at high graphial resolutions the smoothut{o� indued by the weight funtion shows up onsiderably, though it is quan-titatively of a small order of magnitude. Thus there is quite some work to bedone on methods of this kind. An example is provided by Figure 2, where on-tours of the reprodued Franke{type surfae, plotted at high resolution on theright{hand side, get rough in omparison to the original funtion on the left.We now want to fous on the reprodution quality and start with the remarkthat the lassial error bounds for radial basis funtion interpolation in thenonstationary setting are loal. This is not diretly stated in the literature,but an be read between the lines of the various proof tehniques, e.g. [40, 27℄.In priniple, if the �ll distane h := h(X;
) of (1) is small enough, and ifloal reonstrution is to be done at some point x 2 
, one an on�ne the loalinterpolant to data at points xj with kx�xjk2 � h with a suitable onstant  >1. Thus the number of loally required data points an be bounded independentof h for reasonably distributed data sets, but due to the nonstationary settingthe ondition will not be bounded above. However, the numerially feasiblerange is muh larger than in global problems. In ases that are sale invariant(powers and thin{plate splines), there is no di�erene between the stationaryand nonstationary settings, and then the loal systems have no serious stabilityproblems.But, unfortunately, there is a subtle di�erene to the tehniques of setion 5.In loal radial basis funtion interpolation as desribed by the loalized stan-dard onvergene analysis, the seletion of data points depends on a seletionof nearest neighbours of the evaluation point x, while in setion 5 we used pre-omputed seletions based on neighbours of eah xk. The loal Lagrangians ofthe two ases will not be omparable, and the proof of loal onvergene ordersdoes not over the situation of setion 5. Furthermore, the loal interpolant in



9 FULLY LOCAL METHODS WITH POLYNOMIAL REPRODUCTION15ase of radial basis funtions is a true linear ombination of the �(kx � xjk2)with kx � xjk2 � h, while in ase of setion 5 suh funtions are multipliedwith the weight funtion. Thus, unfortunately, there is no easy way to arrystandard results on radial basis funtions over to this situation.9 Fully Loal Methods with Polynomial Repro-dutionWe now look generally at loalized tehniques in the sense of the previous se-tion. We depart from radial basis funtions for a while and desribe a folkloreargument provingm{th order of onvergene for stable loal methods with loalreprodution of polynomials of order up to m. At a point x 2 
 we want totake only a subset X(x) := fxj 2 X : kx � xjk2 � hg � X of the data set xwith �ll distane h as in (1), where  > 1 is a onstant. We simply assume thatwe have a linear loal proess at x that is based on data X(x) and that loallyreprodues polynomials of order at most m. In partiular, we keep x �xed andwrite Rf (x) := Xxj2X(x) f(xj)uj(x) (8)with ertain real numbers uj(x) suh thatRp(x) = p(x)holds for all polynomials p up to order m. Note that the reprodution of poly-nomials is on�ned to the single point x. Now we assume that f has ontinuousderivatives up to order m around x, and thus the Taylor expansion Tx;f;m of fat x of order at most m satis�esjf(xj)� Tx;f;m(xj)j � Chmfor all xj 2 X(x), where C depends on  and the derivatives of f near x. Nowwe an bound the loal error viajf(x)� Rf (x)j = jTx;f;m(x) �Rf (x)j= jRTx;f;m(x) �Rf (x)j= ������ Xxj2X(x) (Tx;f;m(xj)� f(xj))uj(x)������� Chm Xxj2X(x) juj(x)j;and we see that the \Lebesgue onstants"L(x) := Xxj2X(x) juj(x)j



9 FULLY LOCAL METHODS WITH POLYNOMIAL REPRODUCTION16should be bounded independent of h, whih is the stability ondition we men-tioned at the outset.Let us look at simple examples �rst. For m = 1, we an get loal reprodutionof onstants by always piking the funtion value at the nearest neighbor. TheLebesgue onstant is 1. If f is ontinuously di�erentiable on 
, and beause anyx 2 
 has a nearest neighbour from X at distane at most h, we get a methodof order 1. The reonstrution is pieewise onstant on the Dirihlet tesselationindued by X , though the tesselation is never atually alulated. For m = 2and if 
 is the onvex hull of X , we an use baryentri oordinates with respetto triangles ontaining x, taking the data at the verties. Any triangulation of
 via X will then lead to a pieewise linear and ontinous reonstrution bylinear �nite elements. The Lebesgue onstant is 1 again.Natural neighbour interpolation is another ase �tting into this framework, Theoriginal version by Sibson [36, 37℄ is ontinuous and reprodues linear poly-nomials with Lebesgue onstant 1, while the C1 extension by Farin [11℄ evenreprodues quadrati polynomials.Of ourse, the general approah above an be ombined with radial basis fun-tion tehniques and a suÆiently large order m of polynomial reprodution. Byan argument in [29℄, the quantity Xxj2X(x)u2j (x)an be bounded above in all relevant ases, even in the nonstationary situa-tion. This is not preisely what we require for the above line of argumentation,but if the loal data sets X(x) onsist of O(1) points, whih is what we anassume for quasi{uniform data distributions, the Lebesgue onstants are uni-formly bounded. However, it always has to assume that the loal data do notallow a vanishing nontrivial polynomial of order m, and under this assumptionone an go bak to m{th order polynomials right away. This is why we do notpursue this setting any further.Here is a little digression. One is tempted to onsider the optimization problemNXj=1 juj(x)j = MinimumNXj=1 uj(x)x�j = x�; 0 � j�j < mto hope for a reasonable method with automati loalization near x. The stan-dard split of the variables uj(x) = u+j (x) � u�j (x) into nonnegative parts leads



9 FULLY LOCAL METHODS WITH POLYNOMIAL REPRODUCTION17to a linear programming problem of simple form. But due to reprodution ofonstants via 1 = NXj=1(u+j (x) � u�j (x));we have NXj=1 u+j (x) � 1and the objetive funtion always satis�esMinimum = NXj=1(u+j (x) + u�j (x)) � 1:Thus for m = 2 all ases with interpolation via loal baryentri oordinatesin a triangle ontaining x will be optimal, irrespetive of the size or positionof the triangle. There is no automati seletion of loal neighbours via thisoptimization problem.Things are even worse when the point x is outside the onvex hull of the data.If the problem is solvable at all, linear programming tells us that there alwaysis an optimal solution based on three points for m = 2, and the solution mustbe determined by baryentri oordinates again, at least one of whih must nowbe negative. The optimum is attained for hoies of triangles where the sum ofnegative baryentri oordinates is minimal in absolute value. Closer inspetionreveals that those optimal triangles are geometrially awful, beause negativebaryentri oordinates of a point x outside a triangle are small in absolutevalue, if the verties \antipodal" to x are far away from x.Similarly bad results are obtained if we replae the L1 objetive funtion by L2or L1, and we onlude that optimal stability does not imply loality, �nishingour digression.For upsampling of gridded data, there are simple and useful folklore formulaeobtainable via the arguments of this setion. For linear preision, upsamplingat the midpoint of edges or at the enter of a square should use the arithmetimean of the data values. Again, we have Lebesgue onstants bounded by 1, andthe proess will be of seond order in terms of the meshwidth. Of ourse, suha proess yields the bilinear loal interpolant when started on four values atthe verties of a square and repeated inde�nitely. Note that though the orderis 2 for data from C2 funtions or surfaes, the resulting funtion or surfaewill not be C2. Shemes with quadrati preision in two variables should use 6points in general. A simple reipe an be obtained from looking at quadratipolynomials in Bernstein{B�ezier representation, but the result will not yield asmooth surfae.



10 MOVING LEAST SQUARES 1810 Moving Least SquaresThe examples above had the disadvantage that they generate surfaes with littlesmoothness, beause the loal shemes depend on the evaluation point x andthe point seletion X(x) in a nontrivial and possibly nonontinuous way. Wenow look at a general reipe that overomes this drawbak and allows arbitrarysmoothness and approximation order, at least in theory.For a �xed evaluation point x 2 
 we onsider the weighted least{squaresproblem Minimize NXj=1 (f(xj)� p(xj))2 �(kx� xjk2)over all polynomials p 2 IPm. Here, the weight funtion is a smooth nonnegativeradial basis funtion � with ompat support, and this is how the above problemturns out to be loalized. The resulting proess, if well{de�ned, will reproduepolynomials up to order m, but we still have to write it in the form (8) andshow that the funtions uj ome out to be smooth.Sine the resulting linear system has a right{hand side that is a linear funtionof the data f(xj), we get (8) without further arguments, but we have to �nd arepresentation of the uj(x). To this end, we introdue self{explanatory matrixnotation to write the objetive funtion as kDxf � DxAak22 with a diagonalN �N matrix Dx having entries p�(kx� xjk2) and an N �Q matrix A withentries pk(xj) for a basis p1; : : : ; pQ of IPm. The solution vetor ax 2 IRQ withrespet to the data vetor f = (f(x1); : : : ; f(xN ))T is uniquely determined bythe system ATDxDxAax = ATDxDxf;provided that the oeÆient matrix ATDxDxA has full rankQ � N . We assumethis for a moment, and we proeed to onstrut a vetor u(x) 2 IRN suh thatfor p(x) := (p1(x); : : : ; pQ(x))T we an write R(x) := aTx p(x) = u(x)T f . This iseasy, if we look at ATDxDxAv(x) = p(x)u(x) = DxDxAv(x) (9)and solve the �rst system for v(x), putting the solution into the seond equation.Thus we get ATu(x) = p(x) for free, whih is the polynomial reprodutionproperty at x. The entries of ATDxDxA areNXi=1 �(kx� xik2)pj(xi)pk(xi);and the matrix has full rank, if we de�neX(x) := fxj 2 X : �(kx � xik2) > 0g



10 MOVING LEAST SQUARES 19and assume that there is no nontrivial polynomial in IPm that vanishes on X(x).One an see learly how the weight funtion loalizes the least{squares problemif it is of ompat support, but the support must be large enough to host atleast a set of points near x that are in general position with respet to IPm.Sine we an write the reonstrution in the form R(x) = uT (x)f without takingare of the loalization expliitly, we see from the system (9) that the smoothnessof the overall approximation is ompletely determined by the smoothness of theweight funtion. Thus we are left with the highly nontrivial problem of boundingthe Lebesgue onstants. A thorough treatment of this, giving all onstantsin expliit form, is due to Wendland [39℄. Thus moving least squares are atehnique that satis�es all requirements: it is e�etive in the sense of setion 2,and it an produe surfaes with any presribed smoothness. However, in itsstandard form it is an approximation rather than an interpolation.One of the main omputational problems of moving least squares is the properdetermination of the loal point seletion X(x). In partiular, there may begreat variations in the data density, and these variations should be exiblyinorporated into the algorithm. We propose to use all data points in a ballwith varying radius around the evaluation point x, i.e.X(x) := X \ BÆ(x)(x) := fxj 2 X : kx� xjk2 � Æ(x)gwhere Æ is a smooth funtion that is alulated beforehand, preferably by an-other moving least squares appproximation. For instane, one an generateO(N) regularly distributed points y1; : : : ; yN in the domain 
 and �nd a \goodalulation radius" Æj for X(yj) := BÆj (x) for eah of these points. Then Æ(x) isonstruted via an intermediate moving least squares algorithm, and the resultis inserted into the atual surfae onstrution tehnique.We �nish the paper with examples provided by R. Baule [1℄, illustrating theuse of a varying alulation radius. We pik the glaier data (N = 8345) fromR. Franke's website http://www.math.nps.navy.mil/~rfranke/, beause ithas a very inhomogeneous data distribution (see Figure 3). The main problemof any reonstrution method is to produe good results where the data aresare, while keeping a good overall reprodution quality of the data. Naiveand diret appliation of moving least squares an either result in a stairaseor an overdose of smoothing (see Figures 4,5 and the examples from [39℄). Ifthe alulation radius varies as in Figure 6, one gets the muh more realistiresults of Figures 7 and 8. In fat, the L1 error on the data goes down from81 to 21 when variable radii are used. A further variation, not desribed herein detail, inludes interpolation via in�nite weights, and then we get the samevisual appearane as in Figure 8, but with zero error on the data.AknowledgementSpeial thanks go to Rainer Baule and Holger Wendland for proofreading.
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