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Abstract

After a series of application papers have proven the approach to be

numerically e�ective, this paper gives the �rst theoretical foundation for

methods solving partial di�erential equations by collocation with (possi-

bly radial) basis functions.

0 Introduction

We consider a general class of boundary or initial value problems for partial

di�erential equations:

Lu = f in 
 � IR

d

L :W




! L




Bu = g in @
 B :W




!W

@


:

(0.1)

Here, the operator L is a linear partial di�erential operator, and B is a \bound-

ary" operator that prescribes values on (possibly only part of) the boundary

@
 of the underlying bounded domain 
 2 IR

d

. The domain and range spaces

can be viewed as certain instances of Sobolev or L

2

spaces such that appro-

priate trace theorems hold. We can also allow multiple di�erential, integral,

or boundary operators, but we do not want to introduce too much notation at

this stage.

The goal of this paper is to prove the feasibility of collocation methods using

radial basis functions. The solution u of the PDE is approximated by

u � u

h

; u

h

2 S

h

� W




;

where S

h

is a space of trial or \ansatz" functions that consists of linear com-

binations of translates of a single global basis function � : IR

d

! IR and/or

of translates of its multivariate derivatives

@

�

@x

�

�(� � x) or L�(� � �)
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using the di�erential operator L arising in the problem setting. If �(�) =

�(k � k

2

) holds for a univariate function � : IR! IR, then � is called a radial

basis function. The most important examples of the latter are

Gaussians exp(�ck � k

2

2

) c > 0

Multiquadrics (c

2

+ k � k

2

2

)

�=2

c > 0; � 2 IR

6=0

n 2IN

thin{plate splines k � k

�

2

� 2 IR

>0

n 2IN

k � k

�

2

log k � k

2

� 2 2IN

Wendland functions (1� k � k

2

)

m

+

p(k � k

2

) p polynomial; [15]

However, we do not want to restrict ourselves to radial functions here. Fur-

thermore, one can generalize the above setting by using �(x; y) instead of

�(x� y), with � now de�ned on IR

d

� IR

d

. To cope with nonconvex domains

having inward corners, we can �nally enlarge S

h

by adding speci�c functions

with singular derivatives, depending on the angle of the corner. But in order

to keep the paper short, we omit such details.

There is quite some literature on the practical feasibility of collocation with

radial basis functions, see e.g. [8], [3], [9], [2], [14], and [5] in chronological

order. However, none of the above papers provides a convergence proof or an

error bound, and it will be the goal of this paper to �ll that gap partially.

On the positive side, these papers contain various numerical examples showing

that one can get use collocation with radial basis functions to get good results

at reasonably low computational cost. Therefore this paper does not contain

any further numerical examples; the reader is referred to the above papers

for practical test cases. These still work with globally de�ned functions that

imply non-sparse \sti�ness matrices". But if the new compactly supported

positive de�nite functions [15] are used, these matrices become sparse and the

numerical complexity decreases dramatically, thus opening a wider range of

applications.

On the other hand, there is another list of applied papers [10], [18], [17], and

[6] that consider the solution of homogenized PDE problems by approximation

with radial basis functions in the interior of the domain. The homogenization

can in turn be done comfortably by approximation of boundary values with

radial basis functions, because the latter have nicely behaving extensions to all

of IR

d

. Again, the above papers lack a theoretical foundation, but this will be

supplied by the parallel paper [13].
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Finally, Iske and Sonar [7] apply radial basis functions to reconstruct func-

tion values of solutions of hyperbolic conservation laws from results of ENO

schemes. This is an application of radial basis functions which only very indi-

rectly involves the underlying PDE, but it nicely shows the good approximation

properties of radial basis functions.

1 Collocation as Hermite{Birkho� interpolation

We want to specify our collocation techniques as special instances of general

Hermite{Birkho� interpolation methods. To this end, we split the given col-

location problem into two interpolation problems on the domain 
 and its

boundary @
, respectively:

Domain Boundary

X

1

= fx

1

; : : : ; x

n

g � 
 X

2

= fx

n+1

; : : : ; x

N

g � @


Lu

h

= f in X

1

Bu

h

= g in X

2

�

j

(u) := (Lu)(x

j

); 1 � j � n �

j

(u) := u(x

j

); n+ 1 � j � N

�

j

(u

h

) = f(x

j

); 1 � j � n �

j

(u

h

) = g(x

j

); n+ 1 � j � N

This amounts to a Hermite-Birkho� interpolation problem of �nding a function

u

h

such that

�

j

(u

h

) = y

j

2 IR; 1 � j � N

holds for N functionals �

1

; : : : ; �

N

of mixed type. Note that the addition of

other di�erential or boundary operators would just add some more types of

functionals and is no major complication.

We now want to de�ne a proper space of trial functions. Due to the Mairhuber-

Curtis theorem [1], a space for genuinely multivariate interpolation of functions

must depend on the data functionals. This can be done in our situation by

picking a �xed basis function � 2 L

2

(IR

d

)\C(IR

d

) which is symmetric, smooth,

and positive de�nite in the sense that for all choices of points x

1

; : : : ; x

N

2 IR

d

and all N 2 IN the matrix

(�(x

m

� x

`

))

1�`;m�N

(1.1)
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is positive de�nite. The collocation technique of Kansa [8] then forms the space

S

h

:=

8

<

:

s

h

=

X

j

�

j

�(� � x

j

)

9

=

;

for collocation with general functionals �

1

; : : : ; �

N

. This space is quite appro-

priate if only point evaluation functionals are considered, but in the general

situation of collocation we have to replace the symmetric and positive de�nite

matrix (1.1) by the nonsymmetric matrix

�

�

y

j

�(y � x

`

)

�

1 � j; ` � N

whose nonsingularity is an open problem. This is due to the fact that the func-

tionals �

1

; : : : ; �

N

enter the de�nition of the space S

h

only via their locations

x

1

; : : : ; x

N

. As already pointed out by Wu [16] and later in the PDE context

by Fasshauer [5], a mathematically well-supported way to de�ne the space S

h

is

S

h

:=

8

<

:

s

h

=

X

j

�

j

�

y

j

�(� � y)

9

=

;

:

Here �

y

j

denotes action of the functional �

j

with respect to the variable y.

This requires � to be su�ciently smooth as to allow the application of the

functionals �

1

; : : : ; �

N

to both arguments x and y of �(x � y). This practical

rule{of{thumb is su�cient for practical applications, but needs justi�cation

in the sequel. The resulting collocation matrix consists of applications of the

functionals �

1

; : : : ; �

N

to both arguments of � and thus writes as

�

�

x

j

�

y

k

�(x� y)

�

1 � j; k � N: (1.2)

It turns out to be symmetric and positive de�nite in general, if the functionals

are linearly independent and if the smoothness assumption on � is formulated

properly.

To facilitate such a de�nition, we refer to Fourier transform notation as in the

review article [12] and assume � to have a Fourier transform �

^

> 0 a.e. which

is in L

1

(IR

d

) \ L

2

(IR

d

). Then we de�ne the native space

F

�

:=

n

u 2 L

2

(IR

d

) : u

^

=

p

�

^

2 L

2

(IR

d

)

o

for �, which is the unique Hilbert space on which � introduces a certain natural

inner product that we do not need in this context. But our central assumption
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on the relation of the functionals �

1

; : : : ; �

N

to � is that they belong to the

dual of the native space for �, i.e. to the space

F

�

�

:=

n

� : �

^

�

p

�

^

2 L

2

(IR

d

)

o

;

where the Fourier transform of a functional � is assumed to be expressible via

a function �

^

on IR

d

such that

�(u) =

Z

IR

d

�

^

(!)u

^

(!)d!

holds at least for all tempered test functions u in the Schwartz space. We

illustrate this requirement later. The crucial result due to Wu [16] for our

revised collocation technique then is

Theorem 1.3 If �

1

; : : : ; �

N

2 F

�

�

are linearly independent, then the matrix

(1.2) arising in Hermite-Birkho� interpolation

�

j

(s) = y

j

; 1 � j � N; s 2 S

h

is positive de�nite.

Let us illustrate the condition �

1

; : : : ; �

N

2 F

�

�

for the di�erential operator

L = �. The functionals �

j

(u) = (�u)(x

j

) for x

j

2 IR

d

have a Fourier transform

�

^

j

(!) = �(2�)

�d

k!k

2

2

exp(i!x

j

) for ! 2 IR

d

. The usual basis functions � have

a d{variate Fourier transform �

^

of at least algebraic decay, i.e.

�

^

(!) = O(k!k

�d��

2

); ! !1

for some positive �. Then

�

^

j

�

p

�

^

(!) = O(k!k

2�d=2��=2

2

); ! !1

and the conditions �

^

j

�

p

�

^

2 L

2

(IR

d

) and �

j

2 F

�

�

are satis�ed, if � > 4 holds.

This condition amounts to a smoothness requirement for � in terms of Fourier

transforms, and it is satis�ed for Gaussians, multiquadrics, and Wendland's

[15] compactly supported positive de�nite radial functions

�(x) = (1� kxk

2

)

6

+

(35kxk

2

2

+ 18kxk

2

+ 3) 2 C

4

(IR

d

)

�(x) = (1� kxk

2

)

8

+

(32kxk

3

2

+ 25kxk

2

2

+ 8kxk

2

+ 1) 2 C

6

(IR

d

);

for instance. The two functions above require d � 3.
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Note that the condition � > 4 requires a degree of smoothness of � that makes

the functions in the trial space S

h

much smoother than required for weak

solutions of the di�erential operator �. This fact may be startling, but it also

occurs in a weaker form for classical �nite-element approximations, because

these usually are continuous and thus smoother than functions in Sobolev space

W

1

2

(IR

d

).

2 Error bounds and power functions

We now proceed to give error bounds for Hermite-Birkho� interpolation prob-

lems. Let f 2 F

�

be interpolated by the function s

f;�

2 S

�

, where we use the

notation

� := f�

1

; : : : ; �

N

g � F

�

�

S

�

�

:= span � � F

�

�

S

�

:= span f�

y

j

�(� � y); 1 � j � Ng � F

�

�

j

(s

f;�

) = �

j

(f); 1 � j � N:

We now cite a general error bound in a speci�c form due to Dyn, Narcowich,

and Ward [4], which can be traced back to the hypercircle inequality:

Theorem 2.1 For all functionals � 2 F

�

�

we have

j�(f � s

f;�

)j � inf

�2S

�

�

k�� �k

F

�

�

� inf

s2S

�

kf � sk

F

�

:

This expresses the error as a product of two minimal errors of approximation

problems, one concerning the given function f and the other concerning the

\test functional" � that is used for error evaluation. The second factor is

inf

s2S

�

kf � sk

F

�

= kf � s

f;�

k

F

�

due to one of the optimality principles [12] of interpolation by basis functions.

We now want to establish a connection to the usual error bounds for interpo-

lation by translates of basis functions. If �

�;�

: f 7! �(f � s

f;�

) denotes the
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error functional, then its norm in the dual space is expressible as a function of

� via

P

�;�

(�) := k�

�;�

k

F

�

�

= inf

�2S

�

�

k�� �k

F

�

�

: (2.2)

The second equality follows from taking squares and using

(�; �)

F

�

= �

x

�

y

�(x� y)

together with the usual characterization of best approximations in Hilbert

spaces. Thus we get the error bound

j�(f � s

f;�

)j � P

�;�

(�)kf � s

f;�

k

F

�

:

If we specialize this to the standard case of point evaluation, i.e. setting � = �

x

for the Dirac functional �

x

, then we get the usual notion of the power function

P

�;�

(�

x

) and the pointwise error bound

j(f � s

f;�

)(x)j � P

�;�

(�

x

)kf � s

f;�

k

F

�

: (2.3)

Such bounds are readily available in the literature (see e.g. summaries in [12]

and [11]).

We now generalize such bounds to the Hermite{Birkho� case, but we still have

to identify the type of the test functional � with the type of the data functionals

�

j

. We assume that both functionals are point evaluation functionals applied

after some operator L which usually will be a di�erential or boundary operator.

Theorem 2.4 (Transformation Theorem for Power Functions) Let �

x

� L be

in F

�

�

for all x 2 IR

d

, and let L�L denote the function L

x

L

y

�(x� y). Then

P

�;��L

(�

x

� L) = P

L�L;�

(�

x

):

Proof: Using the appropriate norms in the dual spaces and the Fourier trans-

form

(L�L)

^

= jL

^

j

2

�

^

;

we get

k� � Lk

F

�

�

= k(� � L)

^

p

�

^

k

L

2

(IR

d

)

= k�

^

q

jL

^

j

2

�

^

k

L

2

(IR

d

)

= k�k

F

�

L�L

:

This identity, when applied formally for � = �

x

, proves that our asumptions

make sure that L�L generates a feasible native space F

�

L�L

. The rest follows

from (2.2). 2
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A generalized version of the above transformation theorem is

P

�;��L

(� � L) = P

L�L;�

(�)

under suitable assumptions on the functionals, L, and �. It simply shifts the

operator L from the functionals to the function �, such that the power function

involving � � L and � is reduced to the usual point{evaluation power function

involving L�L instead of �. By construction, the Fourier transform of the func-

tion L�L will be nonnegative a.e., if the same holds for the Fourier transform

of L. Thus the new basis function L�L will then be positive de�nite again.

For instance, in case of L = � the Fourier transform of �(!) just multiplies

by k!k

4

2

when going over to L�L. The usual theory of pointwise bounds for

power functions can then be applied to yield handy and often asymptotically

optimal bounds.

But note that the transformation theorem 2.4 still has a serious drawback,

because it does not apply for sets � of functionals of mixed type. We solve this

problem in the next section.

3 Splitting technique

We now assume the set � := f�

1

; : : : ; �

N

g � F

�

�

of given Hermite{Birkho�

interpolation functionals to be decomposable into sets �

j

that contain only

functionals of a �xed type as covered by the transformation theorem 2.4 for

power functions. Then we use

Theorem 3.1 (Splitting Theorem for power functions) If

� =

[

j

�

j

;

then

P

�;�

(�) � P

�;�

j

(�)

for all j.

Proof: We use the de�nition (2.2) to get

P

�;�

(�) = inf

�2S

�

�

k�� �k

F

�

�

� inf

�2S

�

�

j

k�� �k

F

�

�

= P

�;�

j

(�):
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2

Now we can handle P

�;�

j

(�) with the techniques of the previous section, pick-

ing j such that the type of the test functional � coincides with the type of

functionals in �

j

. At the beginning of section 1 we introduced such a split of

the set of functionals, and in the slightly more general situation (0.1) the above

splitting technique yields two error bounds: one for the error (Lu � Lu

h

)(x)

inside 
 and one for the error (Bu � Bu

h

)(x) on the boundary @
. By the

transformation theorem 2.4 they take the general form (2.3) with � replaced

by functions L�L and B�B, respectively.

But note that this still does not yield a bound for u�u

h

on 
, as �nally required

for a solid foundation of the collocation technique. We solve this problem in

the next section.

4 Final error bounds

The above splitting and transformation techniques allow to derive separate

error bounds for the di�erent types of operators involved in the original PDE

problem. To assemble these into a �nal result, we invoke

Theorem 4.1 (Composition principle for error bounds) If the given PDE prob-

lem is Lipschitz dependent on the data (measured in the L

1

norm on the var-

ious parts of the domain 
 and the boundary @
), then the separate error

bounds of the previous section can be combined into a �nal error bound for the

collocation technique.

This somewhat sloppily formulated \generic" theorem is a simple consequence

of the fact that the usual error bounds of the form (2.3) are L

1

error bounds

for the data of the PDE problem on the bounded subdomains of 
 on which

the (possible various) di�erential and boundary operators act.

To be more speci�c, let us illustrate Theorem 4.1 at work for the Dirichlet

problem of the form (0.1) with L = � and a point{evaluation boundary oper-

ator B = Id on @
. The Lipschitz continuous dependence of the solution on

the data requires two ingredients. First, for all functions u 2W

2

2

(
) there is a

coercivity inequality

(Lu; u)

L

2

� 

1

kuk

2

W

2

2

� kuk

2

L

2
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which implies

kLuk

L

2

� 

2

kuk

1

via Jensen's inequality. This in turn leads to

ku� v

h

k

1;


� C � kLu� Lv

h

k

2;


= C � kf � Lv

h

k

2;


for all functions v

h

2 W

2

2

(
) that also satisfy the boundary condition Bu =

Bv

h

. If we assume f and Lv

h

to be continuous on 
, we can rewrite this as an

L

1

bound

ku� v

h

k

1;


� C �

q

vol(
)kf � Lv

h

k

1;


that describes the Lipschitz continuous dependence of the solution u on the

values of Lu in 
 in case of homogeneous boundary data.

Second, the maximum principle tells us that

ku�w

h

k

1;


� ku� w

h

k

1;@


for all functions w

h

2W

2

2

(
) satisfying Lu = Lw

h

inside 
.

We now assemble these two separate inequalities into our �nal error bound by

picking w

h

such that Lu = Lw

h

and Bw

h

= Bu

h

for our collocation function

u

h

. Then

ku� u

h

k

1;


� ku� w

h

k

1;


+ kw

h

� u

h

k

1;


� kg � u

h

k

1;@


+ C �

p

vol(
)kf � Lu

h

k

1;


is the required inequality in which we can use our technique for bounding the

two terms separately.

Note that this technique does not work for approximation of genuinely weak

solutions of the problem, because the space W

1

2

(IR

d

) does not allow continuous

point evaluation functionals. So far, these are an essential ingredient of our

approach, because the usual error bounds are pointwise. Thus our method

implicitly assumes some higher regularity of the solution. This drawback is

somewhat equalized by the fact that the resulting bounds will improve with

increasing regularity [11]. Altogether, the proposed technique should not be

used for cases with weak regularity and just two variables, because the power

of radial basis function techniques lies in smooth cases with many variables, a

situation which in turn is increasingly di�cult when using �nite elements.
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