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Abstract

It is often observed that interpolation based on translates of radial basis func-

tions or non-radial kernels is numerically unstable due to exceedingly large con-

dition of the kernel matrix. But if stability is assessed in function space without

considering special bases, this paper proves that kernel–based interpolation is sta-

ble. Provided that the data are not too wildly scattered, the L2 or L∞ norms

of interpolants can be bounded above by discrete ℓ2 and ℓ∞ norms of the data.

Furthermore, Lagrange basis functions are uniformly bounded and Lebesgue con-

stants grow at most like the square root of the number of data points. However,

this analysis applies only to kernels of limited smoothness. Numerical examples

support our bounds, but also show that the case of infinitely smooth kernels must

lead to worse bounds in future work, while the observed Lebesgue constants for

kernels with limited smoothness even seem to be independent of the sample size

and the fill distance.

1 Introduction

We consider the recovery of a real–valued function f : Ω → R on some compact domain
Ω ⊆ R

d from its function values f(xj) on a scattered set X = {x1, ..., xN} ⊂ Ω ⊆ R
d.

Independent of how the reconstruction is done in detail, we denote the result as sf,X

and assume that it is a linear function of the data, i.e. it takes the form

sf,X =
N
∑

j=1

f(xj)uj (1)
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with certain continuous functions uj : Ω → R. To assert the stability of the recovery
process f 7→ sf,X , we look for bounds of the form

‖sf,X‖L∞(Ω) ≤ C(X)‖f‖ℓ∞(X) (2)

which imply that the map taking the data into the interpolant is continuous in the
L∞(Ω) and ℓ∞(X) norm. Of course, one can also use L2(Ω) and ℓ2(X) norms above.

By putting (1) into (2), we see that we can bound the stability constant C(X) below as
follows

C(X) ≥ max
x∈Ω

N
∑

j=1

|uj(x)| =: ΛX (3)

where ΛX is the Lebesgue constant which is the maximum of the Lebesgue function
λX(x) :=

∑N
j=1 |uj(x)| .

It is a classical problem to derive upper bounds for the stability constant in (2) and for
its lower bound, the Lebesgue constant ΛX . As well–known in recovery by polynomials,
in both the univariate and the bivariate case, there exist upper bounds for the Lebesgue
function. Moreover, many authors faced the problem of finding near-optimal points
for polynomial interpolation. All these near–optimal sets of N points have a Lebesgue
function that behaves in the one dimensional case like log(N) while as log2(N) in the
two dimensional one (cf. [2] and references therein). An important example, worth
mentioning, of points suitable for polynomial interpolation in the square whose Lebesgue
constant grows as O(log2(N)) are the so-called Padua-points (see [1]).

However, stability bounds for multivariate kernel–based recovery processes are missing.
We shall derive them as follows. Given a positive definite kernel Φ : Ω × Ω → R, the
recovery of functions from function values f(xj) on the set X = {x1, ..., xN} ⊂ Ω ⊆ R

d

of N different data sites can be done via interpolants of the form

sf,X :=
N
∑

j=1

αjΦ(·, xj) (4)

taken from the finite-dimensional space VX := span {Φ(·, x) : x ∈ X} of translates of
the kernel, and satisfying the linear system

AΦ,Xα = f (5)

where AΦ,X := (Φ(xk, xj))1≤j,k≤N is the kernel matrix and f the vector of length N of
data and α the vector of the unknown coefficients. The case of conditionally positive
definite kernels is similar, and we suppress details here.

The interpolant of (4), as in classical polynomial interpolation, can also be written in
terms of cardinal functions uj ∈ VX such that uj(xk) = δj,k. Then, the interpolant (4)
takes the usual Lagrangian form (1).
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The reproduction quality of kernel–based methods is governed by the fill distance or
mesh norm

hX,Ω = sup
x∈Ω

min
xj∈X

‖x − xj‖2 (6)

describing the geometric relation of the set X to the domain Ω. In particular, the
reproduction error is small if hX,Ω is small.

Unfortunately the kernel matrix AΦ,X is ill–conditioned if the data locations come close,
i.e. if the separation distance

qX =
1

2
min

xi, xj ∈ X

xi 6= xj

‖xi − xj‖ . (7)

is small. Then the coefficients of the representation (4) get very large even if the data
values f(xk) are small, and simple linear solvers will fail.

As a final introductory element, we recall that the fill distance (6) and the separation
distance (7) are two fundamental ingredients for standard error and stability estimates
for multivariate interpolants, and they will be also of importance here. The inequality
qX ≤ hX,Ω will hold in most cases, but if points of X nearly coalesce, qX can be much
smaller than hX,Ω, causing instability of the standard solution process. Point sets X are
called quasi–uniform with uniformity constant γ > 1, if the inequality

1

γ
qX ≤ hX,Ω ≤ γqX

holds. Later, we shall consider arbitrary sets with different cardinalities, but with uni-
formity constants bounded above by a fixed number. Note that hX,Ω and qX play an
important role in finding good points for radial basis function interpolation, as recently
studied in [9, 3, 5].

2 Main results

To generate interpolants, we allow conditionally positive definite translation-invariant
kernels

Φ(x, y) = K(x − y) for all x, y ∈ R
d, K : R

d → R

which are reproducing in their “native” Hilbert space N which we assume to be norm–
equivalent to some Sobolev space W τ

2 (Ω) with τ > d/2. The kernel will then have a
Fourier transform satisfying

0 < c(1 + ‖ω‖2
2)

−τ ≤ K̂(ω) ≤ C(1 + ‖ω‖2
2)

−τ (8)

at infinity. This includes, for example, Poisson radial functions (cf. [8, 7]), Sobolev/Matérn
kernels and Wendland’s compactly supported kernels (cf. e.g. [13]). It is well-known
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that under the above assumptions the interpolation problem is uniquely solvable, and
the space VX is a subspace of Sobolev space W τ

2 (Ω).

In what follows, we assume that the constants are dependent on the space dimension,
the domain, and the kernel, and the assertions hold for all sets X of scattered data
locations with sufficiently small fill distance hX,Ω.

Our main result is the following theorem.

Theorem 1 The classical Lebesgue constant for interpolation with Φ on N = |X| data
locations X = {x1, . . . , xN} in a bounded domain Ω ⊆ R

d satisfying an outer cone
condition has a bound of the form

ΛX ≤ C
√

N

(

hX,Ω

qX

)τ−d/2

.

For quasi-uniform sets with bounded uniformity γ, this simplifies to

ΛX ≤ C
√

N.

Each single cardinal function is bounded by

‖uj‖L∞(Ω) ≤ C

(

hX,Ω

qX

)τ−d/2

, (9)

which, in the quasi-uniform case, simplifies to

‖uj‖L∞(Ω) ≤ C. (10)

For the L2 norm,

‖uj‖L2(Ω) ≤ C

(

hX,Ω

qX

)τ−d/2

h
d/2
X,Ω (11)

while for quasi-uniform data locations they behave like

‖uj‖L2(Ω) ≤ Ch
d/2
X,Ω. (12)

Proof. Let us start by bounding the uj. Letting Ψ ∈ C∞, having support in the unit
ball and such that Ψ(0) = 1, ‖Ψ‖L∞(Ω) = 1 (i.e. a ”bump” function). We notice that

|uj(x)| ≤
∣

∣

∣

∣

Ψ

(

x − xj

qX

)∣

∣

∣

∣

+

∣

∣

∣

∣

uj(x) − Ψ

(

x − xj

qX

)∣

∣

∣

∣

. Since the interpolant IXΨ
(

· −xj

qX

)

to

Ψ
(

x−xj

qX

)

on X is uj, by using standard error estimates (cf. [15, Chap.11]), we get

‖uj‖L∞(Ω) ≤ 1 +

∥

∥

∥

∥

IXΨ

( · − xj

qX

)

− Ψ

( · − xj

qX

)∥

∥

∥

∥

L∞(Ω)

≤ 1 + C h
τ−d/2
X,Ω

∥

∥

∥

∥

Ψ

( ·
qX

)∥

∥

∥

∥

N

.

(13)
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For the L2 norm, we obtain the inequality

‖uj‖L2(Ω) ≤ q
d/2
X ‖Ψ‖L2(Ω) + Chτ

X,Ω

∥

∥

∥

∥

Ψ

( ·
qX

)∥

∥

∥

∥

N

. (14)

Hence, we simply need to estimate the native space norm of Ψ( ·
qX

).

∥

∥

∥

∥

Ψ

( ·
qX

)∥

∥

∥

∥

2

N

≤ C

∫

∣

∣

∣
qd
XΨ̂(qXω)

∣

∣

∣

2

(1 + |ω|2)τdω

≤ Cqd
X

∫

∣

∣

∣
Ψ̂(t)

∣

∣

∣

2
(

1 +

∣

∣

∣

∣

t

qX

∣

∣

∣

∣

2
)τ

dt

≤ Cq
d−τ/2
X

∫

∣

∣

∣
Ψ̂(t)

∣

∣

∣

2

(1 + |t|2)τ dt ≤ C1 qd−2τ
X ‖Ψ‖2

L2
.

Thus, the estimates (9)–(12) easily follow.

Finally we give the claimed bound for the Lebesgue constant. Let pf,X(x) =
∑N

j=1 f(xj)Ψ
(

x−xj

qX

)

be the interpolant of the function f to X written in terms of trans-

lates of the function Ψ. Then

‖IXpf,X‖L∞(Ω) ≤ ‖pf,X‖L∞(Ω) + ‖IXpf,X − pf,X‖L∞(Ω) .

The first term is bounded by ‖f‖ℓ∞(X), since pf,X is sum of functions with nonoverlapping
supports. For the second term, since pf,X ∈ N we get

‖IXpf,X − pf,X‖L∞(Ω) ≤ Ch
τ−d/2
X,Ω ‖pf,X‖N .

Then, it remains to estimate ‖pf,X‖N . For τ ∈ N, we have

‖pf,X‖N ≤ C





∑

|α|≤τ

‖Dαpf,X‖2
L2





1/2

≤ C





∑

|α|≤τ

N
∑

i=1

|f(xj)|2
∥

∥

∥

∥

DαΨ

(

x − xj

qX

)∥

∥

∥

∥

2

L2





1/2

≤ C





∑

|α|≤τ

N
∑

i=1

|f(xj)|2qd−2τ
X ‖DαΨ‖2

L2





1/2

≤ Cqd−2τ
X ‖Ψ‖W τ

2

(

N
∑

i=1

|f(xj)|2
)1/2

≤ Cqd−2τ
X ‖Ψ‖W τ

2

√
N‖f‖ℓ∞(X)

This concludes the proof. �

But the Lebesgue constants are only upper bounds for the stability constant in
function space. In fact, we can do better:
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Corollary 2 Interpolation on sufficiently many quasi–uniformly distributed data is sta-
ble in the sense of

‖sf,X‖L∞(Ω) ≤ C
(

‖f‖ℓ∞(X) + ‖f‖ℓ2(X)

)

(15)

and
‖sf,X‖L2(Ω) ≤ Ch

d/2
X,Ω‖f‖ℓ2(X) (16)

with a constant C independent of X.

Proof. The results easily follow from Theorem 1.�

Remarks

1. Note that, in the right-hand side of the inequality (16), the ℓ2 norm is the norm
weighted by the cardinality of X, i.e. a properly scaled discrete version of the L2

norm.

2. The assumption (8) is crucial and, as we shall show below, we are not able to
extend the results to kernels with infinite smoothness, such as the Gaussian. The
next section will provide examples showing that similar results are not possible for
kernels with infinite smoothness.

3. All the previous results can be proved also by using a sampling inequality (cf. [16,
Th. 2.6]), as shown in the note [4].

3 Examples

We ran a series of examples for uniform grids on [−1, 1]2 and increasing numbers N
of data locations. Figure 1 shows the values ΛX of the Lebesgue constants for the
Sobolev/Matern kernel (r/c)νKν(r/c) for ν = 1.5 at scale c = 20. In this and other
examples for kernels with finite smoothness, one can see that our bounds on the Lebesgue
constants are valid, but the experimental Lebesgue constants seem to be uniformly
bounded. In all cases, the maximum of the Lebesgue function is attained in the interior
of the domain.

Things are different for infinitely smooth kernels. Figure 2 shows the behavior for
the Gaussian. The maximum of the Lebesgue function is attained near the corners for
large scales, while the behavior in the interior is as stable as for kernels with limited
smoothness. The Lebesgue constants do not seem to be uniformly bounded.

A second series of examples was run on 225 regular points in [−1, 1]2 for different
kernels at different scales using a parameter c as Φc(x) = Φ(x/c).

Figures 3 to 5 show how the scaling of the Gaussian kernel influences the shape of
the associated Lagrange basis functions. The limit for large scales is called the flat limit
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Figure 1: Lebesgue constants for the Sobolev/Matern kernel
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Figure 2: Lebesgue constants for the Gauss kernel
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[6] which is a Lagrange basis function of the de Boor/Ron polynomial interpolation [12].
It cannot be expected that such Lagrange basis functions are uniformly bounded.

Figure 3: Lagrange basis function on 225 data points, Gaussian kernel with scale 0.1

In contrast to this, Figure 6 shows the corresponding Lagrange basis function for
the Sobolev/Matern kernel at scale 320. The scales were such that the conditions of
the kernel matrices were unfeasible for the double scale. Figure 7 shows the Lebesgue
function in the situation of Figure 5, while Figure 8 shows the Sobolev/Matern case in
the situation of Figure 6.

Figures 9 and 10 show how the same Sobolev kernel behaves on scattered data given
in Figure 11. The encircled point is where the Lagrange function is taken for Figure 9.
Note that the situation does not change dramatically when scattered data are used.

We also checked if the large errors in the corners of the domain in Figure 7 disap-
peared for domains without corners. Figures 12 and 13 show how the same Gaussian
behaves on scattered data on the circle given by Figure 14. It turns out that the bound-
ary behavior is even more dramatic here, since there are no data points on the boundary.

Using Gaussians, with other dilations, did not improve the situation. New results of
a forthcoming Ph.D. thesis by Christian Rieger of the University of Göttingen, suggest
that an O(h2) oversampling in a strip close to the boundary should have a positive
effect. To check this indirectly, we used the greedy method of [5] to determine good
interpolation points by iteratively adding maxima of the power function. Figures 15 and
16 show the dramatic improvement, while the points are now distributed as in Figure
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Figure 4: Lagrange basis function on 225 data points, Gaussian kernel with scale 0.2

Figure 5: Lagrange basis function on 225 data points, Gaussian kernel with scale 0.4
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Figure 6: Lagrange basis function on 225 data points, Sobolev/Matern kernel with scale
320

Figure 7: Lebesgue function on 225 regular data points, Gaussian kernel with scale 0.4
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Figure 8: Lebesgue function on 225 regular data points, Sobolev/Matern kernel with
scale 320

Figure 9: Lagrange basis function on 225 scattered data points, Sobolev/Matern kernel
with scale 320
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Figure 10: Lebesgue function on 225 scattered data points, Sobolev/Matern kernel with
scale 320
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Figure 11: Data points for Figures 9 and 10
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Figure 12: Lagrange basis function for 168 scattered data points on the circle, Gaussian
kernel with scale 0.4

Figure 13: Lebesgue function for 168 scattered data points on the circle, Gaussian kernel
with scale 0.4
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Figure 14: Data points for Figures 12 and 13

17. One could also choose new data points via the maximum of the Lebesgue function,
but this strategy turned out to be inferior.

We also ran some other examples on a cardioidal domain with an incoming cusp, but
the results were not much different.

The improvement by oversampling on the boundary seems to be connected to ana-
lytic kernels, since the corresponding examples for non–smooth kernels showed a much
weaker effect. We add figures for the C2 Wendland function, but we remark that
Matern/Sobolev kernels behave similarly. Note that all functions are chopped at the
boundary of the cardioid.
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