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Abstract

This paper studies the influence of scaling on the behavior of Radial Ba-

sis Function interpolation. It focuses on certain central aspects, but does not

try to be exhaustive. The most important questions are: How does the er-

ror of a kernel-based interpolant vary with the scale of the kernel chosen?

How does the standard error bound vary? And since fixed functions may

be in spaces that allow scalings, like global Sobolev spaces, is there a scale

of the space that matches the function best? The last question is answered

in the affirmative for Sobolev spaces, but the required scale may be hard to

estimate. Scalability of functions turns out to be restricted for spaces gener-

ated by analytic kernels, unless the functions are band-limited. In contrast

to other papers, polynomials and polyharmonics are included as flat lim-

its when checking scales experimentally, with an independent computation.

The numerical results show that the hunt for near-flat scales is questionable,

if users include the flat limit cases right from the start. When there are not

enough data to evaluate errors directly, the scale of the standard error bound

can be varied, up to replacing the norm of the unknown function by the norm

of the interpolant. This follows the behavior of the actual error qualitatively

well, but is only of limited value for estimating error-optimal scales. For ker-

nels and functions with unlimited smoothness, the given interpolation data

are proven to be insufficient for determining useful scales.

1 Introduction

Throughout the paper it is assumed that readers are familiar with the ba-

sics of kernel-based methods, e.g. from books by M.D. Buhmann [4], H.
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Wendland [23], and G. Fasshauer/M. McCourt [8].

It is a well-known fact that interpolation and approximation with radial basis

functions is crucially dependent on scaling. There are two ways to introduce

scaling into a radial basis function. For instance, the classical multiquadrics

are often written as kernels

Φ(‖x− y‖2) := (c2 +‖x− y‖2
2)

β = c2β (1+‖x− y‖2
2/c2)β for all x,y ∈ R

d,

and compactly supported Wendland functions are scaled like in

Φ(‖x− y‖2) := (1−‖x− y‖2/c)m
+ pd,k(‖x− y‖2/c) for all x,y ∈ R

d

to let the support radius be c > 0. The PDE–oriented literature often calls c

a shape parameter (see e.g. [14]). In another context started by B. Fornberg

and his collaborators [7] one works with ε = 1/c instead and calls ε → 0

the flat limit. For details on flat limits, see e.g. [7, 13, 15, 18, 19, 21] with

a good summary in [8]. Here, we shall stick to the latter notation and and

consider scaled radial basis functions

Φε(‖x− y‖2) := Φ(ε‖x− y‖2)

for x, y ∈ R
d with Φ : [0,∞) → R. We ignore multiplication of the kernel

by a scalar here, because the scalar cancels out for interpolation and ap-

proximation. However, it turns up as a process variance in methods that

apply probabilistic estimation after rewriting kernel methods via Gaussian

processes. See [8, 20] for the connection to the deterministic situation.

If data f (x1), . . . , f (xn)∈R of a function f are to be interpolated in scattered

locations x1, . . . ,xn ∈R
d , they determine coefficients α j by the linear system

f (xk) =
n

∑
j=1

α jΦε(xk,x j), 1 ≤ k ≤ n (1)

with a positive definite kernel matrix AX ,Φε with entries Φε(x j,xk), 1 ≤
j,k ≤ n. Then the interpolant is written as

s f ,X ,Φε (x) =
n

∑
j=1

α jΦε(x,x j),

or as a linear combination

s f ,X ,Φε (x) =
n

∑
j=1

f (x j)u
X ,Φε
x j

(x)

for Lagrangians or cardinal interpolants with u
X ,Φε
x j (xi) = δ ji given by

uX ,Φε
x j

(x) =
n

∑
k=1

β X ,Φε

jk Φε(x,xk)
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via the coefficients β X ,Φε

jk , 1 ≤ j,k ≤ n from the inverse of the kernel matrix

AX ,Φε because of

uX ,Φε
x j

(xi) = δ ji = ∑
k

= 1
n
β X ,Φε

jk Φε(xi,xk),1 ≤ j, i ≤ n.

Theoretically, one can use arbitrary positive definite radial basis functions

with arbitrary scales. The result can be seen as independent of f , if one only

looks at the Lagrangians. This will be the topic of Section 2.3.

Fixing a norm for f and the interpolant, one can ask for an error-optimal

scale that minimizes ‖ f − s f ,X ,Φε‖ over all manageable scales. This is an

interesting problem in theory and practice, and still open in both respects.

There is a vast literature on numerical methods for estimating optimal scales

in practice, but we shall not compare these here.

If users minimize errors or error bounds for a specific X , the distribution and

density of points may have a strong influence on the result, leading to differ-

ent suggested scales for different X . Users should be cautious when seeing

estimates of optimal scales behaving like 1/h(X ,Ω) for the fill distance

h = h(X ,Ω) = sup
y∈Ω

min
x∈X

‖x− y‖2,

since it is well-known [2, 1] that there is no convergence in such a stationary

situation except for conditionally positive kernels.

A possible workaround to minimizing the error directly is to ask for an error-

bound-optimal scale that minimizes some specified norm of the error. The

standard pointwise L∞ error bound is

| f (x)− s f ,X ,Φε (x)| ≤ PX ,Φε (x)‖ f‖Ω,Φε (2)

using the domain-independent Power Function. It holds for all functions f

from the local native space HΩ,Φ and all finite sets X ⊂ Ω of centers. By

standard extension arguments [23, Section 10.7] one has

‖ f‖Ω,Φε ≤ ‖EΩ( f )‖Rd ,Φε

for the canonical extension EΩ( f ) of f to the whole space. If norms are

taken, one gets two variations. The local bound is

‖ f − s f ,X ,Φε‖Ω,∞ ≤ ‖PX ,Φε‖Ω,∞‖ f‖Ω,Φε ≤ ‖PX ,Φε‖Ω,∞‖EΩ f‖Rd ,Φε
(3)

holding on the local native space HΩ,Φ, while a global one is

‖ f − s f ,X ,Φε‖Ω,∞ ≤ ‖PX ,Φε‖Ω,∞‖ f‖Rd ,Φε
(4)
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holding on the global native space HRd ,Φ. This is the version we shall ana-

lyze in Section 3. Note that (4) turns into (3) if f is replaced by EΩ( f ). Both

factors in the right-hand side of (4) will depend on ε . The bound splits into

an f -dependent part ‖ f‖Rd ,Φε
and an X -dependent part ‖PX ,Φε‖Ω,∞ what-

ever the scaling is. This raises the question whether there is a scale ε that

minimizes ‖ f‖
Rd ,Φε

without caring for the data.

Furthermore, convergence rates for interpolation often do not depend on

scaling, but the factor in front of the rates does. This means that there must

be an X -independent part in the whole problem.

All of this raises the question whether functions have a “natural scaling”

that can be recovered approximately somehow, being independent of the

interpolation problem. And since ‖ f‖Φε is a factor in the error bound (4),

there is some hope that a minimal ‖ f‖Φε also cares for small factors in front

of convergence rates. Surprisingly, functions in global Sobolev spaces have

such a natural scale, as proven in Section 4.

But there are practical limits to scaling. It is well–known [17] that the con-

dition of the kernel matrices AX ,Φε increases dramatically for ε → 0, while

the interpolants still exist for all ε > 0. There are many workarounds for

this, e.g. Contour-Padé [12], RBF-QR [10], and RBF-GA [11] by the group

around Bengt Fornberg, and Hilbert-Schmidt-SVD by Fasshauer/McCourt

[8, Chapter 13]. But we shall only focus on the flat limit here, not on

methods to reach it via small scales. It requires to distinguish between two

kinds of radial kernels: the analytic ones have convergent expansions into

powers of ‖x− y‖2
2, like the Gaussian or inverse multiquadrics Φ(x− y) =

(1+ ‖x− y‖2
2)

−m for positive m. These have infinite smoothness, and their

Fourier transform decays exponentially towards infinity. The other non-

analytic kind has limited smoothness, and their Fourier transform decays

algebraically, i.e. as a negative finite power towards infinity. These include

Matérn-Sobolev and compactly supported Wendland [22] or Buhmann [3]

kernels, among others. The flat limit for the analytic kernels is a polynomial

[7] except for certain degenerations [15, 16, 19] depending on the point sets,

while the flat limit for the others [21] is a polyharmonic interpolant based

on the conditionally positive definite kernels

K(x,y) =

{
‖x− y‖2m−d d odd

‖x− y‖2m log‖x− y‖2 d even

with generalized Fourier transforms ‖ω‖−2m
2 on R

d. These kernels are scale-

invariant, because the scale comes to the front as a scalar factor in the Fourier

transform. They are hard to beat if it comes to handle stencils for approxima-

tion of derivatives [5], and they offer a convenient bypass around all scaling
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problems. Situations with very small ε and kernels with finite smoothness

will be explained perfectly by interpolation with polyharmonic kernels that

should be used right from the start in such cases. The discussion of flat limits

should therefore be confined to analytic kernels.

Summarizing, the above discussion shows that the strong dependence of

radial basis function techniques on scaling is a feature, not a bug. The func-

tions supplying the data already have a hidden natural scale, independent of

how the reconstruction by interpolation or approximation is done, and good

recovery methods should therefore not be scale–independent. This paper

tries to clarify the scaling effects to some extent.

It starts by collecting some basic facts on scaling in Section 2 for the con-

venience of readers. These include some useful invariance relations and

describe the dependence of Power Functions and Lagrangians on scaling.

Optimal scales of functions result from studying norms ‖ f‖Φε for fixed f as

functions of ε in section 2.1.

Finally, we look at the limit ε → 0 for analytic kernels Φ in section 6, ig-

noring possible degenerations. It is known that the limit interpolant is a

polynomial, but here we study the behavior of the norm of the interpolation

error as a function of ε . Experimentally, it is a function of ε that can have

sharp local minima at seemingly unexpected scales, but there are also many

cases where the flat limit has an optimal error norm. Certain criteria for

these two cases are provided, but they are hard to handle in practice. How-

ever, it is proven that any fixed set of interpolation data does not determine

whether the flat limit is optimal or not. Users need additional data for error

evaluation when they search for optimal scales.

2 Basic Facts on Scaling and Spaces

Throughout the paper, functions will be real-valued, defined on R
d, and

Fourier transformable. We do not treat localized versions of scaling here.

Furthermore, we focus on functions with continuous point evaluation, and

therefore we work on Hilbert spaces HΦ with reproducing kernels Φ. These

kernels will be translation-invariant and Fourier transformable, i.e. there is

a reproduction property

f (x) = ( f ,Φ(x−·))HΦ
for all f ∈ HΦ, x ∈ R

d

and an inner product

( f ,g)HΦ
= (2π)−d/2

∫

Rd

f̂ (ω)ĝ(ω)

Φ̂(ω)
dω for all f ∈ HΦ
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with the usual property

Φ(x− y) = (Φ(x−·),Φ(·− y))HΦ
for all x,y ∈R

d . (5)

A particularly interesting case is Sobolev space W m
2 (Rd) for m > d/2 with

the Whittle-Matérn kernel

Φ(x) :=
21−m

Γ(m)
‖x‖

m−d/2
2 Km−d/2(‖x‖2) (6)

using the modified Bessel function of second kind. It has the d-variate

Fourier transform

Φ̂(ω) = (1+‖ω‖2
2)

−m for all ω ∈R
d (7)

to make it compatible with the inner product above.

Definition 1. A function f : R
d → R will be scaled by

fε(x) := f (εx) for all x ∈ R
d, ε > 0. (8)

Note that scaling is “inverted” in the Fourier domain by

f̂ε(ω) = ε−d f̂ (ω/ε) = ε−d f̂1/ε (ω) for all ω ∈ R
d , ε > 0. (9)

Thus it is equivalent up to a factor to consider scaling of a function or

its Fourier transform. If one would define scaling differently, namely by

fε(x) := εd/2 f (εx), there would be Fourier transform symmetry. We avoid

this, because we want to keep the fact that ε → 0 implies that fε does not

go to zero, while the Fourier transform of fε goes to zero if it decays fast

enough at infinity. This is the “flat limit” situation, and this paper will keep

an eye on flat limits throughout.

The scaling law (8) will scale compact supports properly, keeping fε(0) =
f (0) invariant, but this will not be true in frequency space. There, the inte-

gral over frequency space is invariant.

When we scale the kernel K of the Hilbert space HΦ, we shall denote the

scaled inner product by (·, ·)Φε belonging to the scaled kernel Kε of the

Hilbert space HΦε Then the dual version

(δx,δy)Φ = (Φ(x−·),Φ(·− y))HΦ
= Φ(x− y) for all x,y ∈R

d

of (5) yields

(δx,δy)Φε = Φε(x− y) = Φ(εx− εy) = (δεx,δεy)Φ (10)

for all x,y ∈R
d, ε > 0. This is a scaling law for point evaluation functionals.

When treating fixed functions f ∈ HΦ with scaled kernels KΦε , it is not

clear whether all scaled native spaces HΦε contain f , and whether the na-

tive spaces are nested or norm-equivalent. We postpone this to the study of

norms ‖ f‖Φε for f ∈HΦ, and it will turn out that analytic kernels will cause

problems.
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2.1 Scaling of Kernel-Based Norms

We consider functions f ∈ HΦ and start with a simple scaling law

‖ fε‖Φε = ‖ f‖Φ (11)

that follows from

‖ fε‖
2
Φε

=

∫

Rd

| f̂ε(ω)|2

Φ̂ε(ω)
dω

= ε−2d

∫

Rd

| f̂ (ω/ε)|2

Φ̂ε (ω)
dω

= ε−d

∫

Rd

| f̂ (η)|2

Φ̂ε(ηε)
dη

=

∫

Rd

| f̂ (η)|2

Φ̂(η)
dη

= ‖ f‖2
Φ.

In the form

‖ fε‖Φ = ‖ f‖Φ1/ε

this proves that scaling a function or a kernel is the same thing for calculating

native space norms, as long as one of the sides exists.

Now we fix functions f ∈ HΦ and check for which kernel scales we have

f ∈ HΦε . A scale ε is called Φ-admissible for f ∈ HΦ, if ‖ f‖Φε is finite.

A simple restriction on admissible scales is

‖ f‖2
Φε

= εd
∫
Rd

| f̂ (ω)|2

Φ̂(ω/ε)
dω

≥ εd‖ f‖L2
‖Φ̂‖−1

∞

(12)

with three implications: for large ε the norm ‖ f‖2
Φε

must be large, for small ε

it can not be smaller than O(εd), and admissible scales ε with ‖ f‖2
Φε

≤‖ f‖2
Φ

are bounded above. Altogether, the case of large ε is not interesting.

Theorem 1. For kernels with finite smoothness, arbitrary scales are ad-

missible. In particular, if the Fourier transform of Φ behaves like Φ̂(ω) =
Θ(‖ω‖−β ) with β > d near infinity, then

‖ f‖2
Φε

= Θ(εd max(1,ε−β ))‖ f‖2
Φ

for all ε > 0 and all f ∈ HΦ. The spaces HΦε are identical as sets and

norm-equivalent, the equivalence constants behaving like εd max(1,ε−β )
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For Sobolev space W m
2 (Rd) with integer m, this holds for β = 2m, but we

can get the explicit formula

‖ f‖2
Φε

= εd
m

∑
j=0

(
m

j

)
ε−2 j| f |2

W
j

2 (R
d)

for all f ∈W m
2 (Rd).

Since we are in global Sobolev space, the seminorms are norms, and thus

none of the | f |
W

j
2 (R

d)
can vanish.

Proof. We consider

‖ f‖2
Φε

=
∫
Rd

| f̂ (ω)|2

Φ̂ε(ω)
dω

= εd
∫
Rd

| f̂ (ω)|2

Φ̂(ω/ε)

= εd
∫
Rd

| f̂ (ω)|2

Φ̂(ω)

Φ̂(ω)

Φ̂(ω/ε)
dω

(13)

and get the two-sided bound

inf
ω∈Rd

Φ̂(ω)

Φ̂(ω/ε)
≤

‖ f‖2
Φε

εd‖ f‖2
Φ

≤ sup
ω∈Rd

Φ̂(ω)

Φ̂(ω/ε)
.

To show that both bounds behave like max(1,ε−β ) for the finite smoothness

case, we assume

0 < C0 ≤ Φ̂(ω) ≤ C1 for ‖ω‖2 ≤ c

0 < c0‖ω‖
−β
2 ≤ Φ̂(ω) ≤ c1‖ω‖

−β
2 for ‖ω‖2 ≥ c

and bound the quotient by

C0

C1

≤
Φ̂(ω)

Φ̂(ω/ε)
≤

C1

C0

for ‖ω‖2 ≤ c,‖ω‖2/ε ≤ c,

C0cβ

c1

≤
Φ̂(ω)

Φ̂(ω/ε)
≤ ε−β C1cβ

c0

for ‖ω‖2 ≤ c,‖ω‖2/ε ≥ c,

ε−β c0cβ

C1

≤
Φ̂(ω)

Φ̂(ω/ε)
≤

c1c−β

C0

for ‖ω‖2 ≥ c,‖ω‖2/ε ≤ c,

ε−β c0

c1

≤
Φ̂(ω)

Φ̂(ω/ε)
≤ ε−β c1

c0

for ‖ω‖2 ≥ c,‖ω‖2/ε ≥ c.

If m is an integer, we can continue from (13) to

‖ f‖2
Φε

= (2π)−d/2εd
m

∑
j=0

(
m

j

)
ε−2 j

∫

Rd
| f̂ (ω)|2‖ω‖2 j

2 dω

= εd
m

∑
j=0

(
m

j

)
ε−2 j| f |2

W
j

2 (R
d)
.

(14)
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Theorem 2. For Gaussians and other kernels with exponential decay of the

Fourier transform at infinity, the inclusion HΦ ⊆HΦε is true only for ε ≥ 1.

For single functions, kernel scales ε < 1 may be admissible, but this depends

on the function. For bandlimited functions and all kernels, all kernel scales

are admissible.

Proof. If we assume an exponential law

Φ̂(ω) = cexp(−γ‖ω‖2)

near infinity, we get

Φ̂(ω)

Φ̂(ω/ε)
= exp(−γ‖ω‖2)exp(γ‖ω‖2/ε).

Now ‖ f‖2
Φε

gets unbounded for ε < 1 provided that the integrable function

| f̂ (ω)|2/Φ(ω) is bounded below near infinity by an arbitrarily large negative

power of ‖ω‖2. The same argument works for the Gaussian, and shows that

admissible scales are strongly f -dependent.

For bandlimited functions, all scales are admissible by the above argumen-

tation. If the spectrum of f is limited by ‖ω‖2 ≤ B, and if we define

δ−
Φ (K) := inf

‖ω‖2≤K
Φ̂(ω), δ+

Φ (K) := sup
‖ω‖2≤K

Φ̂(ω),

equation (13) yields

δ−
Φ (B)

δ+
Φ (B/ε)

≤
‖ f‖2

Φε

εd‖ f‖2
Φ

≤
δ+

Φ (B)

δ−
Φ (B/ε)

(15)

to show admissibility of all scales for all kernels.

Because the native space norm does not exist in the limit, Theorem 2 for-

bids to go to flat limits for analytic kernels if ‖ f‖2
Φε

occurs, e.g. for standard

error bounds in terms of the Power Function. The flat limit of Lagrangians

in the left-hand side of (17) exists, but the right-hand side cannot be formed

for ε < 1.

Here, we ignored domain-dependent native spaces and their norms. These

are always equivalent to the global norms on R
d, but the norm equivalence

constants will vary when kernels are scaled. Since Section 3 will be confined

to global norms as well, we ignore the localized norms.
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2.2 Scaling the Power Function

For interpolation in X = {x1, . . . ,xn}, the power function is

P2
X ,Φ(x) := inf

a∈Rn

∥∥∥∥∥δx −
n

∑
j=1

a jδx j

∥∥∥∥∥

2

Φ

.

and if we apply the scaling law (10), then

PX ,Φε (x) = PεX ,Φ(εx) for all x ∈ R
d.

For Power Functions, scaling points and scaling kernels is the same, and the

invariance relation is

PX ,Φ(x) = PεX ,Φ1/ε
(εx).

The Power Function PX ,Φε (x) = PεX ,Φ(εx) can be bounded via the standard

arguments in [23]. If the usual geometric properties on the domain Ω and

the point set X are satisfied, there is a Φ- and geometry-dependent function

FΦ such that

PX ,Φ(x) ≤ FΦ(h) for all x ∈ Ω

for the fill distance

h := sup
y∈Ω

min
x∈X

‖y− x‖2.

Scaling X and x to εX and εx leaves the geometry invariant, and therefore

PεX ,Φ(εx)≤ FΦ(εh)

for ε ≤ 1. The function FΦ(h) can have algebraic or exponential decay to-

wards zero for h → 0. A similar argument is in [5] for convergence of sten-

cils, though restricted to Sobolev spaces. In the case W m
2 (Ω) for Ω ⊂ R

d ,

the above function is FΦ(h) = chm−d/2, and for kernels satisfying Theorem1

it is FΦ(h) = chβ/2−d/2.

Note that [17] provides a two-sided bound with the same FΦ in case of

asymptotically uniformly distributed points and kernels with finite smooth-

ness.

2.3 Scaling of Lagrangians

For Lagrange basis functions u
X ,Φ
j we get

δ j,k = u
X ,Φε
j (xk) = ∑

xi∈X

a ji(X ,Φε)Φ(εxk − εxi),

u
X ,Φε
j (x) = ∑

xi∈X

a ji(εX ,Φ)Φ(εx− εxi),

= u
εX ,Φ
j (εx).
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This proves that scaling points or kernels is the same thing for calculating

Lagrangians, and there is an invariance relation

u
X ,Φ
j (x) = u

εX ,Φ1/ε

j (εx) or u
X ,Φε
j (x) = u

εX ,Φ
j (εx).

The paper [6] proves that Lagrangians for kernels with limited smoothness

are uniformly bounded if points are asymptotically uniformly distributed.

Checking the proof under consideration of scaling reveals that it works in-

dependent of scaling, because the scale factor cancels out. The geometric

assumptions are satisfied, because the form u
εX ,Φ
j (εx) just scales the geom-

etry by ε . But the proof uses a bump function argument, and therefore fails

for analytic kernels like Gaussians or inverse multiquadrics. This is in line

with the fact that Lagrangians diverge in the flat limit for analytic kernels

if they do not converge to polynomials [13] in degenerate cases, and it is

also in line with the convergence towards polyharmonic interpolants [21]

for non-analytic kernels.

2.4 L∞ Error Under Scaling

If a user just has a single interpolation problem for a fixed point set X and

wants to use the best possible kernel and scaling, the error

f (x)− s f ,X ,Φε (x) = f (x)− ∑
x j∈X

f (x j)u
X ,Φε
x j

just depends on the behavior of the Lagrangians u
X ,Φε
x j . For large ε , these

converge to delta functions δx j
(x) for all analytic kernels, and for ε → 0 they

will converge to a limit Lagrangian, except for degenerate situations in case

of analytic kernels, where they converge to ±∞. The limit Lagrangians are

polynomials for analytic kernels and polyharmonics for kernels with finite

smoothness.

When evaluating the error as a function of ε , it may be that the minimum

is at ε = 0, i.e. the flat limit. In particular, this is to be expected when f

is close to a polynomial and analytic kernels are used, or if f is close to

a polyharmonic otherwise. But plenty of easy experiments show that the

error above may have a minimal L∞ norm for some positive ε , in a specific

situation determined by f , X , and Φ. Observing such cases does not exhibit

a clear pattern because of the strong dependence on f , and it is hard to

attribute to one of the three ingredients.

One can get rid of the influence of f by focusing on the Lagrangians, but this

will not be what single-case users want. They might not even be interested

at all in function spaces or smoothness properties of f , using only the values

f (X). To go on from here, additional properties of Lagrangians are needed,

e.g. moment conditions, but this leads to open problems.
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3 Scaling of Error Bounds

The standard bound

| f (x)− s f ,X ,Φ(x)| ≤ PX ,Φ(x)‖ f‖Φ (16)

can be scaled in different ways. Scaling only Φ results in

∣∣∣∣∣ f (x)− ∑
x j∈X

f (x j)u
X ,Φε
j (x)

∣∣∣∣∣≤ PX ,Φε (x)‖ f‖Φε , (17)

playing the left-hand side back to the Lagrangians and Section 2.3. To see

whether the bound gives more information, both factors in the right-hand

side need further consideration. Scaling only f and scaling only the points

are not very useful and therefore omitted here.

The inequality is tight for some ε-dependent function, but it is not clear how

the ingredients vary with ε for a fixed f and whether the two sides stay close.

Recall that Theorem 2 excludes scales ε < 1 for arbitrary f in the case of

analytic kernels.

The factors in the right-hand side were dealt with in sections 2.1 and 2.2,

and we only have to look at the product. The error bound could be improved

if the native space norm were taken in the domain-dependent native space.

But this localized norm is bounded above by the global one [23], and this is

the way the error bound is used in practice. We keep the global norm here.

Theorem 3. For kernels satisfying Theorem 1 and for asymptotically uni-

formly placed points, the right-hand side of the standard error bound (16)

behaves like
O(1) for ε → 0,

O(εβ ) for ε → ∞.

In Sobolev spaces W m
2 (Rd) with integer m, the square of the bound behaves

like

ε2m
m

∑
j=0

(
m

j

)
ε−2 j| f |2

W
j

2 (R
d)

for ε → 0.

Proof. From the previous section, we get that the error bound is O(1) for

ε → 0, caring for the flat limit. For large ε , the behavior of both factors leads

to the O(εβ ) asymptotics of the bound.

So far, this result is disappointing, because it is not clear if there is a

minimum with respect to ε . Some experimental observations are in Section

5.4 showing typical cases in Figure 4.
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4 Natural Scales of Functions

To proceed towards finding a “natural” scale of a global function f ∈ HΦ

with respect to the kernel chosen, we consider the minimum of ‖ f‖Φε over

all scales ε that are Φ-admissible for f . By (12), the search for optimal

scales can be limited to

εd ≤
‖ f‖2

Φ‖Φ̂‖∞

‖ f‖2
2

. (18)

For kernels with finite smoothness, Theorem 1 guarantees such a minimum,

because ‖ f‖Φε goes to infinity like εd for ε → ∞, and like εd−β for ε → 0

with β > d.

For general functions and analytic kernels, Theorem 2 limits scales to

ε ≥ 1, while (18) gives an upper limit in all cases. Therefore there must

be a minimum of ‖ f‖Φε in this restricted domain. But things are strongly

f -dependent, and if f is bandlimited, we can look at the limit ε → 0 even

for analytic kernels. Then (15) shows that the left bound gets constant for

ε → 0, but the right one will blow up. There may be a minimum at ε = 0,

i.e. for the flat limit case.

By the scaling law ‖ fε‖
2
Φ = ‖ f‖2

Φ1/ε
, the minimization of ‖ fε‖

2
Φ is equiva-

lent to minimization of ‖ f‖2
Φ1/ε

, and is therefore also covered by the above

argumentation, except that ε must be replaced by 1/ε .

Summarizing, all functions in native spaces of a kernel with finite smooth-

ness have a natural scale as an ε that minimizes ‖ f‖2
Φε

. For analytic kernels,

existence of a minimum of ‖ f‖Φε will be crucially dependent on f , but it

may arise in the flat limit ε = 0. Even if it could be estimated efficiently

and accurately, it would not necessarily lead to a minimal error in (17) for

specific cases. But it may have a small factor in front of the convergence

rate associated with the unscaled kernel. Some experimental results are in

Section 5.3, but they replace ‖ f‖Φε by ‖s f ,X ,Φε ‖Φε and the resulting scales

are not particularly useful.

5 Examples

A comparison of existing scale estimation algorithms is not attempted here.

The examples will be strictly confined to illustrations of the theoretical ar-

guments of this paper. Sophisticated algorithms are avoided in favor of what

scientists do when they want quick results. Throughout, we work in the unit

square in R
2, and we limit all hazardous scales in a primitive way by stop-

ping when MATLAB’s condest exceeds 1014. In contrast to many other

papers, we add the flat limit situation, not as a limit, but by adding a polyno-

mial and a polyharmonic solution.
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5.1 Remarks on Kernels and Functions

To keep the number of final figures small, only four kernels and functions

were selected as typical cases.

From the class of analytic kernels, we only consider the Gaussian and the

inverse multiquadric Φ(x,y) = (1+‖x−y‖2)
−1/2. For analytic functions, we

only consider the scaled class fε(x) = (1+ε2‖x‖2
2)

−1 that models the Runge

phenomenon. Their complex extensions have singularities at distance 1/ε

from the real axis, and we use ε = 1/4 for a good and ε = 25 for a bad case.

Both are polynomials up to machine accuracy, but the bad case needs a very

high degree for this. One can expect that the polynomial flat limit works

fine for the good case and fails for the bad one, even though the function is

analytic on the real numbers.

The non-analytic case has to compromise on the kernel side. The intention

is to use kernels with comparable W 3
2 (R

2) smoothness. The matching 2D

polyharmonics are ‖x− y‖4
2 log‖x− y‖2, and the matching radial Matérn-

Sobolev kernel is K2(r)r
2. But standard Wendland kernels φ3,k on R

2 work

in W
k+3/2

2 (R2) and cannot match W 3
2 (R

2). Picking k = 2, i.e. the radial

kernel (1− r)6
+(35r2 + 18r + 3) leads to W 3.5

2 (R2) smoothness, and there-

fore we also use the polyharmonic kernel ‖x− y‖6
2 log‖x− y‖2 working in

W 4
2 (R

2).

In legends of plots, kernels are abbreviated by g, mq, ms3, w3.5, and for the

flat limit we use p, ph3, and ph4 for polynomials and polyharmonics. The

trailing number indicates Sobolev smoothness, not the usual RBF parame-

ters. To match the basic kernel scale to the domain [−1,+1]2 and regular

point sets of 121 or 441 points, the Gaussian, the inverse multiquadric and

the Wendland function were pre-scaled by ε = 10,10, and 0.2, respectively.

Note that for small ε the Wendland functions have large supports, and the

matrices are not sparse. Error evaluation is made in cell midpoints only.

Polynomials were fitted to the data by brute force, multiplying data values by

the pseudoinverse of a high-order Vandermonde matrix. This is a hazardous

thing by itself, but we wanted to use primitive techniques only. Since the

result deteriorates numerically when large polynomial degrees are taken, we

picked a degree that yields a minimal L∞ error. Of course, there are much

better techniques for polynomial interpolation.

For non-analytic functions we picked ‖x‖3
2 for a case with a single interior

point of non-smoothness, and ‖x‖∞ for a piecewise linear continuous case

with derivative discontinuities along lines. The chosen kernels and functions

are the result of many test runs suppressed here.
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5.2 L∞ Errors as Functions of Scales

Figure 1 shows observed L∞ errors as functions of scales, for the four func-

tions and kernels. The point set X consisted of 121 regular points on [−1,+1]2,

while Figure 2 is for 441 points, just to demonstrate the dependence on X .

The errors for polynomials and polyharmonics are given as horizontal lines

with markers.

Here is a list of observations.

1. The top two functions are analytic, but only the left one is close to

a low-degree polynomial. There, the flat limit for analytic kernels is

optimal, but the non-analytic kernels do not perform badly, as well as

the polyharmonics.

2. The top right case shows the Runge effect. Well-chosen scales of an-

alytic kernels may give quite some improvement over the others, but

the scale estimation will be hazardous. Non-analytic kernels and poly-

harmonics work fine when data sets get dense.

3. The bottom left case is a mildly nonsmooth non-polynomial func-

tion with the non-smoothness located just in the center of the domain.

Polyharmonics are the best choice.

4. The bottom right case is continuous, but nondifferentiable along lines.

Except for lucky scales, analytic kernels should be avoided. The others

work well.

5. The hunt for error-minimizing scales may pay off for analytic kernels,

but is a risky thing that often is not much better than what kernels with

low smoothness or flat-limit polyharmonics can do.

6. If one calculates a polynomial and a polyharmonic solution to pick the

better one, there is not much to gain by bridging the gap between the

flat limit and the smallest ε that works within a crude condest limit.

Continuing the curves to the left will not give something much better.

7. Motivated by the result that small errors imply large conditions of ker-

nel matrices [17], users were tempted to take the smallest ε they could

handle. The right-hand plots show that this is misleading for analytic

kernels. For non-analytic kernels it works fine, but the polyharmonic

flat limit will be a better and faster solution, realizing the smallest ε

ever.

8. The vast literature on algorithms for scale estimation has no clear win-

ner yet. A possible reason is that the above plots show widely varying

situations to care for. It is suggested to include ε = 0 into testing of

scales, because the flat limit solution, polynomial or polyharmonic,

may be hard to beat by any other scaling.
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Figure 1: ℓ∞ errors on midpoints as functions of scale for 121 regular data loca-

tions on [−1,+1]2.
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Figure 2: ℓ∞ errors on midpoints as functions of scale for 441 regular data loca-

tions on [−1,+1]2.
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5.3 Native Space Norms as Functions of Scales

Section 4 calls for plots of ‖ f‖Φε as functions of ε with clear minima. This

would be another estimation method for scales, if it were cheaply and ac-

curately available. But only native space norms ‖s f ,X ,Φε ‖Φε ≤ ‖ f‖Φε of

interpolants on point sets X are available, and it is not clear how close they

are to ‖ f‖Φε and whether they have the same behavior for varying ε as pre-

dicted for ‖ f‖Φε by Section 4, in particular Theorem 1. There, as functions

of c = 1/ε , the quantity cd‖ f‖Φ1/c
should be a polynomial in c of degree m,

if f is in W m
2 (Rd) and Φ is the kernel for that space. At least, one should

look at cd‖s f ,X ,Φ1/c
‖Φ1/c

as a function of large c for various kernels. This is

still open, and maybe it yields an estimate for a good smoothness parameter.

Figure 3 shows ‖s f ,X ,Φε ‖Φε as a function of ε for the four selected cases in

the 441 point situation. The scale-independent native space norms of the

polyharmonics are given for comparison as horizontal lines with markers.

There is no transition to the flat limit, because ‖s f ,X ,Φε ‖Φε seems to behave

similarly to ‖ f‖Φε , i.e. going to infinity in the flat limit, exponentially for

analytic kernels and algebraically for the others. Minima of the native space

norm, if there are any, do not appear to be useful as criteria for good scales.

5.4 Error Bounds as Functions of Scales

Figure 4 shows the accessible part of the right-hand side of the standard error

bound 4. The replacement of ‖ f‖Φε by ‖s f ,X ,Φε ‖Φε deletes the reliability as

an upper bound, but it is interesting to see whether it indicates good scales

when compared to Figure 2 for the error. Note that the curves in Figure 4

can be calculated without having any additional points for error evaluation.

The qualitative behavior is unexpectedly similar, and the observations made

after seeing the error plots could have been made without evaluating errors.

Figures 6 and 5 combine Figures 2 and 4 for easier comparison of actual

errors (top row) to native space norms (center row) and error bounds (bot-

tom row). Figure 5 has two moderately well-behaving cases, while Figure

6 shows results for the nonsmooth function max(|x|, |y|) to the right and

1/(1+25(x2 + y2)) with an expectable Runge phenomenon on the left.

In the flat limit, the factors in the error bound 4 tend towards 0 ·∞ with

unknown behavior. The flat limit marks in Figure 4 are the error bounds for

the polyharmonic case, and not attained as the limits of the curves, unlike

Figure 2. The conclusion is that the error bounds are useless when traced to

the flat limit.
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Figure 3: Native space norms for varying scale.
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Figure 4: Approximate error bounds for varying scale.



5 EXAMPLES 21

0 0.5 1 1.5 2
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

Abs error for function 1/(1+(x.
2
+y.

2
)/4)

Scale epsilon

g
mq
ms3
w3.5
p
ph3
ph4

0 0.5 1 1.5 2
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Abs error for function (x.
2
+y.

2
).

1.5

Scale epsilon

g
mq
ms3
w3.5
p
ph3
ph4

0 0.5 1 1.5 2
10

−1

10
0

10
1

10
2

10
3

NS norms for function 1/(1+(x.
2
+y.

2
)/4)

Scale epsilon

g
mq
ms3
w3.5
ph3
ph4

0 0.5 1 1.5 2
10

0

10
1

10
2

10
3

10
4

10
5

NS norms for function (x.
2
+y.

2
).

1.5

Scale epsilon

g
mq
ms3
w3.5
ph3
ph4

0 0.5 1 1.5 2
10

−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Approximate error bounds for function 1/(1+(x.
2
+y.

2
)/4)

Scale epsilon

g
mq
ms3
w3.5
ph3
ph4

0 0.5 1 1.5 2
10

−3

10
−2

10
−1

10
0

10
1

10
2

Approximate error bounds for function (x.
2
+y.

2
).

1.5

Scale epsilon

g
mq
ms3
w3.5
ph3
ph4

Figure 5: Errors, native space norms, and approximate error bounds for two se-

lected functions.
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Figure 6: Errors, native space norms, and approximate error bounds for two se-

lected functions
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6 Error Expansions

We now look at cases with infinite smoothness. There are cases where a

positive scale ε gives smaller errors than the flat limit, and we want to see

under which conditions this works. To this end, we have to expand the

interpolation error into a power series in ε and see how it behaves.

Consider the interpolation problem on a set X of n points x1, . . . ,xn. as in

Section 1. For the Gaussian kernel [18] and other analytic radial basis func-

tions [15], the flat limit for ε → 0 exists and is a polynomial, if certain

nondegeneracy conditions hold [15, I-III, p. 110]. In addition, then there is

an expansion

s f ,X ,Φε (x) = p0, f (x)+ ε2 p2, f (x)+ ε4 p4, f (x)+ · · · , (19)

of the interpolant, where p0, f is the polynomial interpolant in the flat limit,

and where the other p2 j, f are polynomials vanishing on all data sites. They

are linear in the data of f on X , i.e. they have the form

p2 j, f =
n

∑
i=1

f (xi)p2 j,i (20)

with polynomials p2 j,i that are only dependent on X and the kernel Φ. If

p0, f has degree K, then p2 j, f has degree K +2 j [15].

When going towards scales that yield a smaller error than the flat limit for

given f and X , consider

σ f (x) = sgn (p0, f (x)− f (x))

and write the error as a perturbation of the flat limit error as

σ f (x)(s f ,X ,Φε (x)− f (x)) = |p0, f (x)− f (x)|+σ f (x)
∞

∑
j=k

ε2 j
n

∑
i=1

f (xi)p2 j,i(x).

Some ε > 0 can only be an improvement over the flat limit, if

σ f (x)
∞

∑
j=k

ε2 j
n

∑
i=1

f (xi)p2 j,i(x) < 0 (21)

on all extremal points x of f − p0, f . This might be true even for values of

ε that are not extremely small. If we focus on very small ε and take the

smallest k such that p2k, f is nonzero, we need

σ f (x)
n

∑
i=1

f (xi)p2k,i(x) < 0.
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Both criteria are rather hard to check and analyze.

Users may think that the data points X and the function values y j = f (x j)
already determine whether the flat limit is optimal or not, and that this suf-

fices to estimate a good scale. But this is not true. Even if the interpolation

data are fixed, there are functions that can lead to any possible outcome.

Theorem 4. For all choices of point sets X = {x1, . . . ,xn} and function val-

ues y1, . . . ,yn it cannot be decided whether the flat limit is error-optimal

or not. More precisely, there are functions f that attain the values y j =
f (x j), 1 ≤ j ≤ n and have an optimal flat limit or not.

Proof. Let the point set X and the kernel Φ be fixed. Furthermore, we

consider fixed data values y j at the x j ∈ X and let the functions f with

f (x j) = y j, x j ∈ X vary. For each such function, the polynomials p2k, f are

the same, and we denote them now by p2k,X ,Y to separate the set X of data

locations from the set Y of function values. Now let g be any function that

vanishes on X and consider the function fg(x) = p0,X ,Y (x)−g(x). Then

s fg,X ,Φε (x)− fg(x) = sp0,X ,Y ,X ,Φε (x)− p0,X ,Y (x)+g(x)

= g(x)+
∞

∑
j=k

ε2 j p2 j,X ,Y (x)

shows that all functions g that vanish on X can arise as error functions in

the flat limit. Let k(X ,Y,g) be the smallest k ≥ 1 such that p2k,X ,Y does not

vanish on the extremal points of g. Then

sgn p2k(X ,Y,g),X ,Y (x) =−sgn g(x)

should hold on the extremal points of g if the flat limit is not optimal for

small ε .

This is the situation when X ,Y , and g are prescribed. But one may take

k(X ,Y ) to be the smallest k ≥ 1 such that p2k,X ,Y does not vanish, and then

fix g=−p2k,X ,Y to arrive at the same situation, while the choice g=+p2k,X ,Y

leads to local optimality of the flat limit.

The consequence is that users must spare data points for error evaluation,

if they want to get anywhere with a numerical estimation of scales. This is

part of the Leave-one-out-cross-validation (LOOCV) technique, see [9].

7 Conclusions and Open Problems

Choosing “good” scales for kernel-based interpolation remains a challenge,

both in theory and practice. A few things could be contributed here, but

there are many open issues.
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Sobolev spaces on R
d form a scale of spaces, and each function belonging to

one of these spaces belongs to all of them. When minimizing the norm of a

given function over all scales of spaces, there is a unique minimum, defining

a “natural” scale of the function. But this scale is hard to estimate, and it

is only of limited practical value for finding error-optimal scales, because it

minimizes a function norm, not an interpolation error norm. However, the

“natural scale” may be useful elsewhere.

If the error of an interpolant cannot be evaluated because there are no ad-

ditional data, one might look at the minimum of the standard error bound,

because it does not need additional data. But, in contrast to the natural scale,

there is no theoretical guarantee for a nonzero scale that minimizes the error.

In particular, the flat limit may be the zero scale that yields the optimal er-

ror. There is some experimental support for the strategy to calculate the flat

limit case in parallel to the standard scale-dependent solution. In a variety

of cases, the flat limit error comes out small enough to let the unstable hunt

for an error-optimal scale be not worth while. Criteria for this case would

be helpful.

In the case of analytic kernels like the Gaussian or the multiquadrics, changes

of scales imply nontrivial changes of the underlying Reproducing Kernel

Hilbert space, making scale changes a hazardous issue even in theory. But

this is no restriction if one focuses on weak error norms. In particular, one

can expand the pointwise error into a series wrt. the scale, but the result

does not easily yield useful criteria for “good” scales. These criteria should

be improved. However, the expansions can be used for showing that for

fixed interpolation data, the unknown function on the other points can be

chosen to yield any possible error function. In addition, the flat limit may be

optimal or not, just by changing the function outside the given interpolation

data.

Readers are encouraged to extend the above situations, and this paper hope-

fully serves as a starting point.
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