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The Missing Wendland Functions

Robert Schaback1
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Abstract: The Wendland radial basis functions [8, 9] are piecewise polyno-
mial compactly supported reproducing kernels in Hilbert spaces which are
norm–equivalent to Sobolev spaces. But they only cover the Sobolev spaces

Hd/2+k+1/2(Rd), k ∈ N (1)

and leave out the integer order spaces in even dimensions. We derive the
missing Wendland functions working for half–integer k and even dimensions,
reproducing integer–order Sobolev spaces in even dimensions, but they turn
out to have two additional non–polynomial terms: a logarithm and a square
root. To give these functions a solid mathematical foundation, a generalized
version of the “dimension walk” is applied. While the classical dimension
walk proceeds in steps of two space dimensions taking single derivatives, the
new one proceeds in steps of single dimensions and uses “halved” derivatives
of fractional calculus.

Keywords: Sobolev spaces, compactly supported radial basis functions, ker-
nels, hypergeometric functions, positive definite functions
AMS classifications: 33C90, 41A05, 41A15, 41A30, 41A63, 65D07, 65D10

1 Algorithm

First, we give a simple recipe for constructing generalized Wendland func-
tions, provide a few examples, and leave details to the rest of the paper.

The basic tool is the “dimension walk” [9] dating back to Matheron [5], see
also [7]. In its standard form [9], the dimension walk proceeds in steps of two
dimensions using standard derivatives, while [6] has a generalized version
capable of stepping in single dimensions using “halved” derivatives from a
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variation of fractional calculus. The formula (9.2.20) in [6] (see also Gneiting
[4]) reads

ψµ,k(x) =

∫ 1

x

r(1 − r)µ (r2 − x2)k−1
+

Γ(k)2k−1
dr for all x, µ ≥ 0, k > 0 (2)

and it is normally used only for integer k, µ to get the polynomial represen-
tations of the Wendland functions. The connection to the φd,k notation in
Wendland’s monograph [9] to the above formula is via

φd,k = ψ⌊d/2⌋+k+1,k, (3)

because there are good reasons to pick the smallest known µ which guarantees
ψµ,k to be positive definite in d dimensions for a given d, and this minimal µ
is ⌊d/2⌋+ k + 1 for integer k. The case of half–integer k or µ of the formula
(2) was not treated so far, though it clearly generates functions with support
in [0, 1]. The following MAPLE snippet

wend:=proc(m,k,x)

local wend;

wend:=r*(1-r)^m*(r*r-x*x)^(k-1)/(GAMMA(k)*2^(k-1));

wend:=int(wend,r=x..1);

return factor(simplify(wend));

end proc:

calculates the above integral and runs for all reasonable and fixed choices of
m and k where one half–integer is allowed, while it fails if both m and k are
genuine half–integers. Since ψd/2+k+1/2,k = φd,k will be proven in Corollary
3.1 below to be reproducing in spaces norm–equivalent to Hd/2+k+1/2(Rd) for
half–integer k and even d, the above recipe generates the missing Wendland
functions for such k. The first interesting case is µ = d = 2, k = 1/2 with

ψ2,1/2(x) =

√
2

3
√
π

(

3x2 log

(

x

1 +
√

1 − x2

)

+ (2x2 + 1)
√

1 − x2

)

plotted in Figure 1. It is a reproducing kernel in an isomorphic copy of
H2(R2). Using the abbreviations

L(x) := log

(

x

1 +
√

1 − x2

)

S(x) :=
√

1 − x2

(4)

the next cases are

ψ2,3/2(x) =
−
√

2

60
√
π

(

15x4L(x) + (8x4 + 9x2 − 2)S(x)
)

,
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Figure 1: ψ2,1/2

ψ2,5/2(x) =

√
2

2520
√
π

(

105x6L(x) + (48x6 + 87x4 − 38x2 + 8)S(x)
)

.

ψ4,1/2(x) =

√
2

30
√
π

(

(45x4 + 60x2)L(x) + (16x4 + 83x2 + 6)S(x)
)

,

ψ4,3/2(x) =
−
√

2

420
√
π

(

(105x6 + 210x4)L(x)

+(32x6 + 247x4 + 40x2 − 4)S(x)) ,

ψ4,5/2(x) =

√
2

30240
√
π

(

(945x8 + 2520x6)L(x)

+(256x8 + 263x6 + 690x4 − 136x2 + 16)S(x)) ,

ψ6,1/2(x) =

√
2

280
√
π

(

(525x6 + 2100x4 + 840x2)L(x)

+(128x6 + 1779x4 + 1518x2 + 40)S(x)) .

The general case will be proven below to be of the form

ψ2m,(2ℓ−1)/2(x) = x2ℓpm,ℓ(x
2)L(x) + qm,ℓ(x

2)S(x) (5)

where pm,ℓ is of degree m−1 and qm,ℓ is of degree m−1+ ℓ. These functions
do not seem to be directly available via the technique of Buhmann [2].
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Besides proving the above statements, the following background theory will
touch a number of general issues concerning radial basis function construc-
tion. In particular, it will exhibit the important role of the Bessel radial basis
functions.

2 Radial Transforms

To analyze the recursion and the positive definiteness of these functions, we
now have to refer to the machinery of [7] and [6]. Proof details can be found
there.

It is well–known that a radial basis function

Φ(x) := φ(‖x‖2), x ∈ R
d

has a radial d–variate Fourier transform

Φ̂(ω) = ‖ω‖−(d−2)/2
2

∫ ∞

0

φ(r)rd/2J(d−2)/2(r‖ω‖2)dr (6)

if the integral exists. It allows the Fourier transform of a radial function to
be written as a univariate Hankel transform.

We now introduce t = r2/2 as a new variable, writing a radial basis function
φ “in f–form” as

φ(‖ · ‖2) = f(‖ · ‖2
2/2). (7)

Then (6) for ν = (d− 2)/2 turns into

(Fνf)(s) :=

∫ ∞

0

f(t)tνHν(ts)dt (8)

with the function

(z

2

)−ν

Jν(z) = Hν(z
2/4) =

∞
∑

k=0

(−z2/4)k

k!Γ(k + ν + 1)
(9)

for ν ∈ C. Like (6), this is a generalization of the Fourier transform on radial
functions, but now in f–form. Note that both transforms mimic Fourier
transforms for spaces of fractal dimension, because ν = (d − 2)/2 need not
be a half–integer.

The functions
(z

2

)−ν

Jν(z) = Hν(z
2/4)
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are called oscillatory radial basis functions by Fornberg et. al. [3]. The
above derivation shows that their f–form is of central importance, because it
guides the Fourier transform of general radial functions in f form. We shall
use them frequently in what follows.

Using derivative formulae for the Hν functions, one gets

− d

ds
Fν(f)(s) = Fν+1(f)(s) and (Fν+1(−f ′))(s) = (Fν(f))(s).

Going back to ν = (d − 2)/2, these are the basic features of the dimension
walk, but we shall need them later in steps of dimension one:

Theorem 2.1. If the mentioned Fourier transforms and derivatives exist,

• the (d + 2)-variate Fourier transform of a radial function after the
f–form substitution (7) is the negative univariate derivative of the d-
variate Fourier transform in f–form, and

• the d–variate Fourier transform of a radial function in f–form is the
(d+ 2)–variate Fourier transform of the negative derivative of f .

The dimension walk, expressed via derivatives, is extremely useful when pro-
gramming with radial basis functions. It turns out that all the relevant classes
of radial basis functions, when written in f form, are invariant under differ-
entiation and integration, while the Fν operators map the class to another
one which is also closed under differentiation and integration. Implementing
the general class in f form automatically yields an implementation of all
derivatives. But we shall need fractional derivatives to generalize all of this.

To this end, [7] introduces a scale of integral operators

Iα(f)(t) :=

∫ ∞

t

f(s)
(s− t)α−1

Γ(α)
ds (10)

for all α > 0, t ≥ 0, defined on continuous functions on [0,∞) with compact
support or exponential decay at infinity. The simplest special case is

I1(f)(t) :=

∫ ∞

t

f(s)ds

with the inverse
I−1(f)(r) := −f ′(r)
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we already had above, doing the dimension walk. These operators satisfy

Iα ◦ Iβ = Iα+β

for all α, β > 0. Thus the “semi-integration” operator

I1/2(f)(t) =

∫ ∞

t

f(s)
√

π(s− t)
ds

satisfies I1/2 ◦ I1/2 = I1. These definitions can be extended to let

Iα ◦ Iβ = Iα+β

hold for all α, β ∈ R and on suitable domains, but we refer to [7, 6] for
details. Note that all of these operators are intended to work on f–forms of
radial functions, not on their standard form. They are closely connected but
not identical to what is used in the standard form of fractional calculus.

With these operators at hand, [7, 6] generalize the dimension walk to

(Fµ ◦ Fν)(f) = Iν−µ(f)
Fµ = Iν−µFν

Fν = FµIν−µ

(11)

as far as the operators are applicable, in particular for ν ≥ µ and on com-
pactly supported functions, and this is what we need for generating the
missing Wendland functions.

3 Application to Wendland Functions

Due to a result of Askey [1] the radial truncated power function

Aµ(·) := (1 − ‖ · ‖2)
µ
+

is positive definite on Rd for µ ≥ ⌊d/2⌋+ 1, because it has a strictly positive
radial Fourier transform in this case. Following [9], p. 81 we allow µ to be
real. The f–form of Askey functions is

aµ(s) := (1 −
√

2s)µ
+.

Since the Iα operators preserve compact supports and are applicable to aµ

for all α, µ > 0, the functions

ψµ,α(r) := (Iα(aµ))(r2/2)) (12)
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are well–defined and supported in [0, 1] for all α, µ > 0 and can be called
general Wendland functions, and their f–form is

aµ,α := Iα(aµ) with aµ,0 = aµ.

At this point, we do not know for which parameters they are positive definite
in which space dimension.

Let us evaluate their f–form as a finite integral

(Iαaµ)(u) =

∫ ∞

0

(1 −
√

2s)µ
+

(s− u)α−1
+

Γ(α)
ds

=

∫ 1/2

u

(1 −
√

2s)µ (s− u)α−1

Γ(α)
ds

=

∫ 1

√
2u

t(1 − t)µ (t2/2 − u)α−1

Γ(α)
dt

=

∫ 1

x

t(1 − t)µ (t2 − x2)α−1

Γ(α)2α−1
dt

= ψµ,α(x)

(13)

for 0 ≤ u = x2/2 ≤ 1/2 or 0 ≤ x =
√

2u ≤ 1. Note that this is (2) in the first
section. If µ and α are integers, the resulting function is a single polynomial
of degree µ + 2α in the variable x = ‖ · ‖2 on its support, but now we can
construct the missing Wendland functions via half–integers α.

Theorem 3.1. If k ∈ N/2 and

µ ≥ ⌊d/2 + k⌋ + 1, (14)

then the generalized Wendland function ψµ,k is positive definite on Rd.

Proof: We use the identity Fν+α = Fν ◦ Iα from (11) for aµ and get

Fν+kaµ = Fν(Ik(aµ)) (15)

which is valid for all k, µ > 0 and all ν > −1/2. But we restrict ourselves
to the case

ν + k ∈ Z/2, ν + k ≥ −1/2,

and apply Askey’s result for d = 2ν + 2k+ 2 to get that the left-hand side is
strictly positive whenever

µ ≥ ⌊ν + k⌋ + 2.
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Looking at the right–hand side of (15) and introducing a new dimension with
(d − 2)/2 = ν, we see that the function Ik(Aµ) is positive definite on Rd for
(14).

Theorem 3.2. For k ∈ N/2, the d–variate Fourier transform Fd(ψµ,k) of
ψµ,k with

µ = ⌊d/2 + k⌋ + 1 (16)

satisfies
Fd(ψµ,k)(r) = Θ(r−(d+2k+1)) for r → ∞. (17)

Proof: Using (15) again, we see that the d–variate Fourier transform of ψµ,k

in f form is identical to the (d + 2k)–variate Fourier transform of ψµ,0 in f
form. From section 10.5 of [9] we cite

(F2µ−1φµ,0(·2/2))(r) = Θ(r−2µ)
(F2µ−2φµ,0(·2/2))(r) = Θ(r−2µ+1)

(18)

for integer µ and the usual Fourier transform Fd in d dimensions. But if
d + 2k is an integer, we can choose µ by (16) and get a Fourier transform
with behavior (17).

To generalize (1) for half–integers k and even–dimensional spaces, this implies

Corollary 3.1. For integer m and n, the generalized Wendland function
ψm+n+1,n+1/2 taken for even dimensions d = 2m is reproducing in a Hilbert
space which is isomorphic to Sobolev space Hm+n+1(R2m) = Hd/2+k+1/2(Rd)
where k = n+ 1/2.

4 Inductive Construction

This chapter proves the representation (5) for the missing Wendland func-
tions ψ2m,(2ℓ−1)/2 for all ℓ and m. We start with ℓ = 1 and general m.

Theorem 4.1. The general Wendland functions a2m,1/2(t) have the form

a2m,1/2(t) :=

∫ 1/2

t

(1 −
√

2s)2m

√

π(s− t)
ds

= Pm,0(t)L(
√

2t) +Qm,0(t)S(
√

2t)

with polynomials Pm,0, Qm,0 of degree m and

Pm,0(1/2) = Qm,0(1/2)
Pm,0(0) = 0

(19)

for all m ≥ 1.



4 INDUCTIVE CONSTRUCTION 9

Proof: We can also consider

a2m,1/2(x
2/2) =

√
2√
π

∫ 1

x

r(1 − r)2m

√
r2 − x2

dr

= Pm,0(x
2/2)L(x) +Qm,0(x

2/2)S(x)

(20)

and transform this by z :=
√
r2 − x2 into

a2m,1/2(x
2/2) =

√
2√
π

∫

√
1−x2

0

(1 −
√
x2 + z2)2mdz.

Applying the binomial formula leads to terms

gk(x) :=

∫

√
1−x2

0

(x2 + z2)kdz

for all k ∈ Z/2 with 0 ≤ k ≤ m combining into

a2m,1/2(x
2/2) =

√
2√
π

2m
∑

j=0

(−1)j

(

2m

j

)

gj/2(x).

We get

gk+1(x) =

∫

√
1−x2

0

(x2 + z2)(x2 + z2)kdz

= x2gk(x) +

∫

√
1−x2

0

z2(x2 + z2)kdz

= x2gk(x) +

√
1 − x2

2(k + 1)
− 1

2(k + 1)

∫

√
1−x2

0

(x2 + z2)k+1dz

= x2gk(x) +

√
1 − x2

2(k + 1)
− 1

2(k + 1)
gk+1(x)

such that

gk+1(x)

(

1 +
1

2(k + 1)

)

= x2gk(x) +

√
1 − x2

2(k + 1)

gk+1(x) =
2k + 2

2k + 3
x2gk(x) +

S(x)

2k + 3

is a useful recursion that boils everything down to

g0(x) =
√

1 − x2 = S(x)

g1/2(x) = −1

2
x2L(x) +

√
1 − x2

2
=

1

2

(

S(x) − x2L(x)
)

.
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This gives polynomials pj , qj, rj of degree at most j with

gj(x) = S(x)pj(x
2)

gj−1/2(x) = L(x)qj(x
2) + S(x)rj−1(x

2)

such that
√
π√
2
a2m,1/2(x

2/2) =
m
∑

i=0

(

2m

2i

)

gi(x)

−
m
∑

i=1

(

2m

2i− 1

)

gi−1/2(x)

= S(x)

(

m
∑

i=0

(

2m

2i

)

pi(x
2) −

m
∑

i=1

(

2m

2i− 1

)

ri−1(x
2)

)

−L(x)

m
∑

i=1

(

2m

2i− 1

)

qi(x
2)

is of the required form.

We have to check the additional conditions (19). Since qj has no constant
term, we get Pm,0(0) = 0. To prove the conditions at 1/2, we remark that
evaluation of an f form at 1/2 means evaluation of the standard form at 1.
We rewrite the representation (20) in terms of z =

√
1 − x2 as

a2m,1/2((1 − z2)/2) = Pm,0((1 − z2)/2)L(
√

1 − z2)

+Qm,0((1 − z2)/2)S(
√

1 − z2)

and now evaluation at x = 1 means evaluation at z = 0. We expand the
terms at z = 0 to get

L(
√

1 − z2) = −z + O(z3)

S(
√

1 − z2) = z

to see that
a2m,1/2(1/2) = −Pm,0(1/2) +Qm,0(1/2)

which vanishes due to the support of the f form ending at 1/2.

Theorem 4.2. The representation

a2m,(2ℓ+1)/2(s) = Pm,ℓ(s)L(
√

2s) +Qm,ℓ(s)S(
√

2s) (21)

with polynomials Pm,ℓ, Qm,ℓ of degree m+ ℓ and

Pm,ℓ(1/2) = Qm,ℓ(1/2)
Pm,0(0) = 0

holds for all m ≥ 1 and all ℓ ≥ 0.
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Proof: We know that (21) holds for ℓ = 0 and all m ≥ 1, and thus we
proceed by induction on ℓ. By the standard dimension walk rules (11) we
have to construct Pm,ℓ, Qm,ℓ from Pm,ℓ−1, Qm,ℓ−1 to satisfy

− a2m,2ℓ−1(s) = a2m,(2ℓ+1)/2(s)
′. (22)

The induction recipe will be to define Pm,ℓ by

Pm,ℓ(s)
′ = −Pm,ℓ−1(s)

Pm,ℓ(0) = 0
(23)

and to define Qm,ℓ via

Qm,ℓ(s)
′(1 − 2s) −Qm,ℓ(s)

= −Pm,ℓ(s)

2s
−Qm,ℓ−1(s)(1 − 2s).

It can easily be shown that the above equation is uniquely solvable for Qm,ℓ

of degree m+ ℓ, and it implies

Qm,ℓ(1/2) = Pm,ℓ(1/2).

Now we have to evaluate both sides of (22) in order to finish the induction.
We need the derivatives

L′(x) =
1

x
√

1 − x2

S ′(x) =
−x√
1 − x2

L(
√

2s)′ =
1

2s
√

1 − 2s

S(
√

2s)′ =
−1√
1 − 2s

and get
a2m,(2ℓ+1)/2(s)

′

= Pm,ℓ(s)
′L(

√
2s) + Pm,ℓ(s)L(

√
2s)′

+Qm,ℓ(s)
′S(

√
2s) +Qm,ℓ(s)S(

√
2s)′

= Pm,ℓ(s)
′L(

√
2s) + Pm,ℓ(s)

1

2s
√

1 − 2s

+Qm,ℓ(s)
′S(

√
2s) −Qm,ℓ(s)

1√
1 − 2s

.
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Focusing on the log terms above and in a2m,(2ℓ−1)/2(s), we see that they are
correct due to our choice of Pm,ℓ. Now we are left with

−Qm,ℓ−1(s)S(
√

2s)
= −Qm,ℓ−1(s)

√
1 − 2s

?
= Pm,ℓ(s)

1

2s
√

1 − 2s

+Qm,ℓ(s)
′√1 − 2s−Qm,ℓ(s)

1√
1 − 2s

=
Pm,ℓ(s) + 2s(1 − 2s)Qm,ℓ(s)

′ − 2sQm,ℓ(s)

2s
√

1 − 2s
.

There, we introduce z :=
√

1 − 2s to get

−Qm,ℓ−1

(

1 − z2

2

)

z

?
=

1

z(1 − z2)

(

Pm,ℓ

(

1 − z2

2

)

+ Q′
m,ℓ

(

1 − z2

2

)

z2(1 − z2) −Qm,ℓ

(

1 − z2

2

)

(1 − z2).

Since our construction yields

Pm,ℓ(1/2) = Qm,ℓ(1/2)
Pm,ℓ(0) = 0,

the critical denominator cancels, and our definition of Qm,ℓ does the job. .

Note that Theorems 4.1 and 4.2 imply the representation (5). The special
form of the pm,ℓ part is due to the fact that (23) does not change the number
of monomial terms, which is fixed at startup in Theorem 4.1, but only blows
the degree up by one.

5 Open Problems

Readers will have noticed that we did not deal with the two remaining cases
of generalized Wendland functions ψµ,k: those with integer k and half–integer
µ and those with both indices being half–integer. We did not focus on these
because they are less promising. This is based on some hypotheses, confirmed
for special cases, which we now formulate.

First, there is quite some evidence that

Fν(aµ,0)(t) = Θ
(

t−ν−3/2
)

for t→ ∞ (24)
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holds in full generality, in particular independent of µ, and is positive for all

µ ≥ ⌈ν +
3

2
⌉, (25)

not only in the special cases related to (18). Note here that the standard
case is recovered by

⌈ν + 3/2⌉ = ⌈d/2 + 1/2⌉ = ⌊d/2⌋ + 1 if ν = (d− 2)/2,

but we allow more general ν. The above assertions should follow from a very
thorough inspection of chapters 6 and 10 of [9], and they generalize Theorems
3.1 and 3.2. Since large µ do not pay off, Wendland’s notation (3) based on
the smallest µ yielding positive definiteness for dimension d makes a lot of
sense.

If the above is assumed, the minimal µ for ψµ,α to be positive definite in
generalized dimension d is

µ = ⌈α + d/2 + 1/2⌉.
Then (24) can be applied for ν = α+(d− 2)/2, proving that the generalized
Wendland function ψ⌈α+d/2+1/2⌉,α is reproducing in Hilbert spaces isomorphic
toHm(Rd) form = α+d/2+1/2. This should be expected for all real d and α,
leading to compactly supported reproducing kernels also in fractional–order
Sobolev spaces.

To generate the integer–order Hilbert spaces in all dimensions, it therefore
suffices to use the classical Wendland functions and those we described here.
The µ parameter is not of central importance. However, fractional Sobolev
spaces will require fractional α, but our integral operators (10) will allow
to generate these either directly via (12) and (13), if the integral can be
calculated, or from a polynomial Wendland function via

Iαaµ = Iα−⌊α⌋I⌊α⌋aµ = Iα−⌊α⌋aµ,⌊α⌋

if the operator Iα−⌊α⌋ can be explicitly evaluated on monomials.

The case of ψµ,α with half–integer µ ∈ (N/2) \N and integer α can easily be
handled with the methods of Section 1 and the MAPLE program presented
there. It generates polynomials times

√
1 − x. But under the above asser-

tions, genuinely half–integer µ do not seem to be minimally chosen. Things
would be different if there were a half–integer leeway in the condition (25),
but F1/2a7/4,0 is not positive, thanks to MAPLE.

Finally we remark that there are good chances to put all of this into a uniform
theory based on hypergeometric functions. But we leave these things open.
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