Jochen Schulz

Impedance tomography on trees

collaboration with the project-group

for non-destructive diagnose

of trees of the Fachhochschule 1, Voltage—
Hildesheim/Holzminden/Géttingen. A

Aim of the project:

To —
O
find the areas of decay and/or damage curtent
to the tree to evaluate the tree and
his danger to the surrounding and so Figure 1: configuration

decide if the tree must be chop down.

Problem:Consider reconstruction of
the conductivities in the domain on the basis of the measured
impedances on the outer boundary.



Measurement-device and test-situation

Ring with 24 electrodes which slightly penetrate the bark to ensure

good coupling and to avoid the insulating bark.

Figure 2: measurement-device with test situation



Mathematical model

Consider the time-independent Maxwell equations especially
Ampere’s law and Faraday’s law (induction law) and using that the
current is divergence free and that a potential u exists.

further assumptions:
e punctual injection and measurement of current and voltage.
e There exist no current flow through the boundary.

with this assumptions we come to an unique neumann
boundary-value problem of the following form:

(direct problem)
Find potential « in 2 with

V- (oVu) =I0(- —xs) — I6(- — z,),

ou
O'@ —O,

/udsz.
Q

(inverse problem)

with given u|sq, I, s and z, find o.

where z; 1s the location of the drain and z,, 1s the location of the

source of the current.



FEM-direct solver

Assume the boundary 952 to be of piecewise C? with

well-behaved edges and corners. Change to weak formulation of
the problem. letu € H'(Q) and v € H'(Q).

the problem in the weak formulation becomes:

/ Vv-oVudz = Iv(zs) — Tv(z,)
Q

because of H! we must approximate the -function:

/Vv-aVudx:/I(x)vdx (1)
Q Q

numerical Implementation in 2D:

With the choice of triangles as finite elements and a basis of
piecewise linear functions (¢, : kK =1,..., N), w and v can be
represented as

N N
w=>Y oxr v=> B

with NV being the number of elements. with this representation and
chosing 3; = 0;; eq. (1) becomes:

I;/Qakvwi(x)'(avwk(x))dx:/I(:C)-wi(x)dx

Q



This can be written as

> (@ (S )i = [ Ta) i) da (i = 1,..., V)
k=1 Q
with

(S )i = | Thila) - (V@) d
being the so-called stiffnessmatrix.

Example for the direct solver
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Figure 3: a) potential, interpolated representation; b) distribution
of conductivity



Reconstruction-methods applied to real data with
large data-error

Problem:

e full-modell algorithms which shows bad results on our real
data

e heuristic algorithms which shows reasonable (not good)

results on our real data

Our goal: Find full-modell algorithms which deliver reasonable
or even good results for the real data under consideration.

We tested 2 known heuristic and 1 known full-modell algorithms
on data from our dummy to solve the inverse problem.

Only the heuristic approaches showed reasonable results on our
real data with an high error of approx 10 %.

With this we developed another full-model algorithm.



Simple layer backprojection

We used 2 backprojection-based models which in principle are
based on the linearity between impedance and voltage (like Ohm’s
law) with a geometry-dependent factor k.
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Figure 4: used grid and visualization of idea



Tomographic backprojection

e assume straight lines between the two pairs of electrodes.

e cach triangle is representing a resistor and use a series
connection which leads to an equation system which can be
solved using least-square:

N = number of triangles, p known , o unknownand j =1,..., N
Example with 4 rectangles:

1 1
p12 =— + —
01 09
1 1
p13 =— + —
01 03
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Figure 5: used grid and visualization of idea



Method of successive local least-square
large data error of approx 10 % = an algorithm is needed, which
is strongly regularized but still shows good results.

1. one step consists of fitting o in one element, let others be
constant. fit over only 3 possible values.

2. repeat (1) with updated o until all elements are reached.

3. repeat (1) and (2) until result ist satisfying.

5 o 5

Figure 6: example first steps of algorithm

the regularization is done through this successive projection on
low-dimensional subspaces and the strong discretization of the
least-square fitting.



Real test-situation
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Figure 8: reconstruction with tomographic backprojection
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Figure 9: reconstruction with our least-square method on iterations
1to6
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