Impedance tomography on trees

collaboration with the project-group for non-destructive diagnose of trees of the Fachhochschule Hildesheim/Holzminden/Göttingen.

Aim of the project:
To
find the areas of decay and/or damage to the tree to evaluate the tree and his danger to the surrounding and so

Figure 1: configuration decide if the tree must be chop down.

Problem:Consider reconstruction of the conductivities in the domain on the basis of the measured impedances on the outer boundary.

Measurement-device and test-situation

Ring with 24 electrodes which slightly penetrate the bark to ensure good coupling and to avoid the insulating bark.

Figure 2: measurement-device with test situation

Mathematical model

Consider the time-independent Maxwell equations especially Ampère's law and Faraday's law (induction law) and using that the current is divergence free and that a potential u exists.
further assumptions:

- punctual injection and measurement of current and voltage.
- There exist no current flow through the boundary.
with this assumptions we come to an unique neumann boundary-value problem of the following form:
(direct problem)
Find potential u in Ω with

$$
\begin{aligned}
\nabla \cdot(\sigma \nabla u) & =I \delta\left(\cdot-x_{s}\right)-I \delta\left(\cdot-x_{q}\right), \\
\sigma \frac{\partial u}{\partial \nu} & =0, \\
\int_{\Omega} u \mathrm{~d} x & =0 .
\end{aligned}
$$

(inverse problem)
with given $\left.u\right|_{\partial \Omega}, I, x_{s}$ and x_{q} find σ.
where x_{s} is the location of the drain and x_{q} is the location of the source of the current.

FEM-direct solver

Assume the boundary $\partial \Omega$ to be of piecewise C^{2} with well-behaved edges and corners. Change to weak formulation of the problem. let $u \in H^{1}(\Omega)$ and $v \in H^{1}(\Omega)$.
the problem in the weak formulation becomes:

$$
\int_{\Omega} \nabla v \cdot \sigma \nabla u \mathrm{~d} x=I v\left(x_{s}\right)-I v\left(x_{q}\right)
$$

because of H^{1} we must approximate the δ-function:

$$
\begin{equation*}
\int_{\Omega} \nabla v \cdot \sigma \nabla u \mathrm{~d} x=\int_{\Omega} I(x) v \mathrm{~d} x \tag{1}
\end{equation*}
$$

numerical Implementation in 2D:

With the choice of triangles as finite elements and a basis of piecewise linear functions $\left(\psi_{k}: k=1, \ldots, N\right), u$ and v can be represented as

$$
u=\sum_{k=1}^{N} \alpha_{k} \psi_{k} \quad v=\sum_{j=1}^{N} \beta_{j} \psi_{j}
$$

with N being the number of elements. with this representation and chosing $\beta_{j}=\delta_{i j}$ eq. (1) becomes:

$$
\sum_{k=1}^{N} \int_{\Omega} \alpha_{k} \nabla \psi_{i}(x) \cdot\left(\sigma \nabla \psi_{k}(x)\right) \mathrm{d} x=\int_{\Omega} I(x) \cdot \psi_{i}(x) \mathrm{d} x
$$

This can be written as

$$
\sum_{k=1}^{N}\left(\alpha_{k}\right)_{k} \cdot\left(S\left(\psi_{i}, \psi_{k}\right)\right)_{i, k}=\int_{\Omega} I(x) \cdot \psi_{i}(x) \mathrm{d} x(i=1, \ldots, N)
$$

with

$$
\left(S\left(\psi_{i}, \psi_{k}\right)\right)_{i, k}=\int_{\Omega} \nabla \psi_{i}(x) \cdot\left(\sigma \nabla \psi_{k}(x)\right) \mathrm{d} x
$$

being the so-called stiffnessmatrix.

Example for the direct solver

Figure 3: a) potential, interpolated representation; b) distribution of conductivity

Reconstruction-methods applied to real data with large data-error

Problem:

- full-modell algorithms which shows bad results on our real data
- heuristic algorithms which shows reasonable (not good) results on our real data

Our goal: Find full-modell algorithms which deliver reasonable or even good results for the real data under consideration.

We tested 2 known heuristic and 1 known full-modell algorithms on data from our dummy to solve the inverse problem.

Only the heuristic approaches showed reasonable results on our real data with an high error of approx 10%.

With this we developed another full-model algorithm.

Simple layer backprojection

We used 2 backprojection-based models which in principle are based on the linearity between impedance and voltage (like Ohm's law) with a geometry-dependent factor k.

Figure 4: used grid and visualization of idea

Tomographic backprojection

- assume straight lines between the two pairs of electrodes.
- each triangle is representing a resistor and use a series connection which leads to an equation system which can be solved using least-square:
$\mathrm{N}=$ number of triangles, ρ known, σ_{j} unknown and $j=1, \ldots, N$ Example with 4 rectangles:

$$
\begin{aligned}
& \rho_{12}=\frac{1}{\sigma_{1}}+\frac{1}{\sigma_{2}} \\
& \rho_{13}=\frac{1}{\sigma_{1}}+\frac{1}{\sigma_{3}}
\end{aligned}
$$

Figure 5: used grid and visualization of idea

Method of successive local least-square

large data error of approx $10 \% \Rightarrow$ an algorithm is needed, which is strongly regularized but still shows good results.

1. one step consists of fitting σ in one element, let others be constant. fit over only 3 possible values.
2. repeat (1) with updated σ until all elements are reached.
3. repeat (1) and (2) until result ist satisfying.

Figure 6: example first steps of algorithm
the regularization is done through this successive projection on low-dimensional subspaces and the strong discretization of the least-square fitting.

Real test-situation

Figure 7: reconstruction with simple layer backprojection

Figure 8: reconstruction with tomographic backprojection

Figure 9: reconstruction with our least-square method on iterations 1 to 6

