
.

......

Why functional programming is good …
…when you like math - examples with Haskell

Jochen Schulz

Georg-August Universität Göttingen

1/18

Table of contents

...1 Introduction

...2 Functional programming with Haskell

...3 Summary

1/18

Programming paradigm

imperative (e.g. C)
object-oriented (e.g. C++)
functional (e.g. Haskell)
(logic)
(symbolc)

some languages have multiple paradigm

2/18

Side effects/pure functions

.side effect..

......

Besides the return value of a function it has one or more of the following
modifies state.
has observable interaction with outside world.

.pure function..

......

A pure function
always returns the same results on the same input.
has no side-effect.

also refered to as referential transparency

pure functions resemble mathematical functions.

3/18

Functional programming

emphasizes pure functions
higher order functions (partial function evaluation, currying)
avoids state and mutable data (Haskell uses Monads)
recursion is mostly used for loops
algebraic type system
strict/lazy evaluation (often lazy, as Haskell)
describes more what is instead what you have to do

4/18

Table of contents

...1 Introduction

...2 Functional programming with Haskell

...3 Summary

5/18

List comprehensions

Some Math:
S = {x2|x ∈ N, x2 < 20}

> [x^2 | x <- [1..10] , x^2 < 20]
[1,4,9,16]

Ranges (and infinite ranges (don’t do this now))
> a = [1..5], [1,3..8], ['a'..'z'], [1..]
[1,2,3,4,5], [1,3,5,7], "abcdefghijklmnopqrstuvwxyz"

usually no direct indexing (needed)
> (head a, tail a, take 2 a, a !! 2)
(1,[2,3,4,5],[1,2],3)

6/18

Functions: Types and Typeclasses

Types
removeNonUppercase :: [Char] -> [Char]
removeNonUppercase st = [c | c <- st, c `elem` ['A'..'Z']]

Typeclasses
factorial :: (Integral a) => a -> a
factorial n = product [1..n]

We also can define types and typeclasses and such form spaces.

7/18

Pattern matching and laziness

pattern matching defines variables through a pattern for given input data
divide :: (Eq a, Num a ,Fractional a) => (a,a) -> a
divide (_,0) = 0
divide (n,d) = n/d

_ matches all and drops it.
> sieve (x:xs) = x: sieve[y | y <- xs, y `mod` x /= 0]
> primes = sieve [2..]
[2,3,5,7 ...
> take 20 (sieve [2..])

x:xs gets the head in x and the tail in xs.
x:y:xs gets the head in x, the second item y and the tail in xs.
and so on.

8/18

Higher order functions I

.Higher order functions..

......Functions that have functions as input and/or output.

partial function evaluation
> addthree :: (Num a) => a -> a -> a -> a
> addthree a b c = a+b+c
> :t addthree
addthree :: Num a => a -> a -> a -> a
> :t addthree 1 2
addthree 1 2 :: Num a => a -> a

9/18

Higher order functions II

map: applies a given function to every element of a list.
> map (+3) [1,5,3,1,6]
[4,8,6,4,9]
> let m = map (+) [1,5,3,1,6]
> (m !! 1) 2
7

filter : filters out all elements from a list, for which a given function
returns False.

> filter (<4) [1,5,3,1,6]
[1,3,1]

lambda functions are anonymous functions and start with \
> map (\x -> odd x) [1,5,3,1,6]
[True,True,True,True,False]

10/18

Higher order functions III

folds like foldl applies a function to a list and accumlates the results.
> foldl (\acc x -> acc + x) 0 [12,4,8]
24

scans like scanl are like foldl, only return the whole progression as a
list.

> scanl (\acc x -> acc + x) 0 [12,4,8]
[0,12,16,24]

There are many more useful functions like this!

11/18

Where are the guards?

where: just like math.
initials :: String -> String -> String
initials firstname lastname = [f] ++ ". " ++ [l] ++ "."

where (f:_) = firstname
(l:_) = lastname

guards: nice syntatic sugar (similar to cases)
fibs2 = tailFibs 0 1 0
tailFibs prev1 prev2 start end

| start == end = next
| otherwise = tailFibs next prev1 (start + 1) end
where next = prev1 + prev2

12/18

Functions: Recursion

facrec :: (Integral a) => a -> a
facrec 0 = 1
facrec n = n * facrec(n-1)

.Tail recursion..

......When the last statement of a function call is the function itself

facrecT :: (Integral a) => a -> a
facrecT 0 = 1
facrecT n = tailfac n 1

where tailfac 0 a = a
tailfac n a = tailfac (n-1) (n*a)

13/18

Monads - or what to do with impurity

Monads…
are like decorators to single commands: For every command they
evaluate some additional code (there is even some similarity to
decorators in python).
are sometimes called programmable semicolons.
enables the handling of side-effect in a controlled way.

14/18

Monads - Example

mbint :: Int -> Int -> Maybe Int
mbint a b

| c == 42 = Nothing
| otherwise = Just c
where c = a+b

Maybe: is a Monad which can be
Just some Type (here Int).
Nothing.

Just: puts a value in an Maybe construct.

> mbint 20 1 >>= mbint 20
Just 41
> mbint 20 1 >>= mbint 20 >>= mbint 1 >>= mbint 20
Nothing

15/18

IO Monad

do-notation
mbint 20 1 >>= mbint 20 >>= mbint 1

donot = do
d1 <- mbint 20 1
d2 <- mbint 20 d1
mbint 1 d2

All I/O is impure and Haskell puts it in the IO Monad.
hw = do

putStrLn "Hello World! type your name!"
name <- getLine
putStrLn ("Hey " ++ name ++ ", Welcome to Haskell!")

16/18

Table of contents

...1 Introduction

...2 Functional programming with Haskell

...3 Summary

17/18

.
Summary..

......

functional programming is very near to mathematics.
it helps avoiding side-effects.
avoids unecessary boilerplate code.

Remark: some languages have some features of functional programming.
So start using it there or directly with Haskell!
Literature

Learn You a Haskell for Great Good!, M. Lipovača
(http://learnyouahaskell.com/),

Real World Haskell, B. O’Sullivan, D. Stewart, J. Goerzen
(http://book.realworldhaskell.org),

Prägnante Programmierung in Haskell (German), R. Grimm
(http://www.linux-magazin.de/Ausgaben/2011/06/Haskell),

18/18

http://learnyouahaskell.com/
http://book.realworldhaskell.org
http://www.linux-magazin.de/Ausgaben/2011/06/Haskell

	Introduction
	Functional programming with Haskell
	Summary

