Outline

The Multiwave Range Test

Jochen Schulz

Institute for Numerical and Applied Mathematics University of Goettingen

8th July 2004

イロト イヨト イヨト イヨト

Outline

Outline

2 Multiwave Range Test

3 Summary and Outlook

(日) (四) (三) (三) (三)

Acoustic Scattering Overview of the Range Test Multi-Modality Adaptive Sensing

Outline

- Acoustic Scattering
- Overview of the Range Test
- Multi-Modality
- Adaptive Sensing
- 2 Multiwave Range Test
- 3 Summary and Outlook

Acoustic Scattering Overview of the Range Test Multi-Modality Adaptive Sensing

Acoustic Scattering Problem

- Consider a bounded domain D of class C^2 .
- Let $u^i \in D$ be the incident field that solves the Helmholtz equation in \mathbb{R}^m

$$\Delta u^i + \kappa^2 u^i = 0$$

with wave number $\kappa > 0$.

• scattered Field u^s solves the Helmholtz equation and satisfies the Sommerfeld radiation condition such that the total field $u = u^i + u^s$ satisfies a boundary condition (Dirichlet, Neumann, Impedance).

(日) (日) (日) (日) (日)

Acoustic Scattering Overview of the Range Test Multi-Modality Adaptive Sensing

Acoustic Scattering Problem

Figure: Model representation

(日) (四) (三) (三) (三)

Acoustic Scattering Overview of the Range Test Multi-Modality Adaptive Sensing

Acoustic Scattering Problem

Direct Problem

Given the shape and physical properties of the domain D and the incident field u^i , find the scattered field u^s .

Inverse Problem (shape reconstruction)

Given the farfield pattern u^{∞} and the incident field u^i find the shape of the domain D.

Acoustic Scattering Overview of the Range Test Multi-Modality Adaptive Sensing

Acoustic Scattering Problem

Direct Problem

Given the shape and physical properties of the domain D and the incident field u^i , find the scattered field u^s .

Inverse Problem (shape reconstruction)

Given the farfield pattern u^{∞} and the incident field u^{i} find the shape of the domain D.

Acoustic Scattering Overview of the Range Test Multi-Modality Adaptive Sensing

Overview of the Range Test

- The Multiwave Range Test is an extension to the Range Test [Kusiak/Potthast/Sylvester].
 It handles multiple incident waves in an inverse acoustic scattering framework to find the shape of an scatterer.
- The *Range Test* tests the analytic continuability of a field into the exterior of some test domain.
- The method is a generalized sampling method which samples with test domains and finds the unknown shape as the intersection of those test domains.
- It does not need the boundary condition of the scatterer.

Acoustic Scattering Overview of the Range Test Multi-Modality Adaptive Sensing

Overview of the Range Test

- The Multiwave Range Test is an extension to the Range Test [Kusiak/Potthast/Sylvester].
 It handles multiple incident waves in an inverse acoustic scattering framework to find the shape of an scatterer.
- The *Range Test* tests the analytic continuability of a field into the exterior of some test domain.
- The method is a generalized sampling method which samples with test domains and finds the unknown shape as the intersection of those test domains.
- It does not need the boundary condition of the scatterer.

Acoustic Scattering Overview of the Range Test Multi-Modality Adaptive Sensing

Overview of the Range Test

- The Multiwave Range Test is an extension to the Range Test [Kusiak/Potthast/Sylvester].
 It handles multiple incident waves in an inverse acoustic scattering framework to find the shape of an scatterer.
- The *Range Test* tests the analytic continuability of a field into the exterior of some test domain.
- The method is a generalized sampling method which samples with test domains and finds the unknown shape as the intersection of those test domains.
- It does not need the boundary condition of the scatterer.

Acoustic Scattering Overview of the Range Test Multi-Modality Adaptive Sensing

Overview of the Range Test

- The Multiwave Range Test is an extension to the Range Test [Kusiak/Potthast/Sylvester].
 It handles multiple incident waves in an inverse acoustic scattering framework to find the shape of an scatterer.
- The *Range Test* tests the analytic continuability of a field into the exterior of some test domain.
- The method is a generalized sampling method which samples with test domains and finds the unknown shape as the intersection of those test domains.
- It does not need the boundary condition of the scatterer.

(日) (문) (문) (문)

Acoustic Scattering Overview of the Range Test Multi-Modality Adaptive Sensing

Multi-Modality and Probe Methods

• The Range Test can used for an arbitrary PDE.

- It is possible to reconstruct the shape of an unknown object independently in different modalities and then merge the reconstructed images.
- In comparison, optimization shemes can also naturally combine different modalities.

Drawbacks: they are usually computationally much more expensive. They often need knowledge of the boundary condition of the object.

(D) (B) (E) (E)

Acoustic Scattering Overview of the Range Test Multi-Modality Adaptive Sensing

Multi-Modality and Probe Methods

- The Range Test can used for an arbitrary PDE.
- It is possible to reconstruct the shape of an unknown object independently in different modalities and then merge the reconstructed images.
- In comparison, optimization shemes can also naturally combine different modalities.

Drawbacks: they are usually computationally much more expensive. They often need knowledge of the boundary condition of the object.

Acoustic Scattering Overview of the Range Test Multi-Modality Adaptive Sensing

Multi-Modality and Probe Methods

- The Range Test can used for an arbitrary PDE.
- It is possible to reconstruct the shape of an unknown object independently in different modalities and then merge the reconstructed images.
- In comparison, optimization shemes can also naturally combine different modalities.
 Drawbacks: they are usually computationally much more

expensive. They often need knowledge of the boundary condition of the object.

(日) (周) (日) (日)

Acoustic Scattering Overview of the Range Test Multi-Modality Adaptive Sensing

Adaptive Sensing

Completeness

If the far field pattern $u^{\infty}(\cdot, d)$ for scattering by all incident plane waves with direction $d \in \mathbb{S}$ of a fixed frequency is known, then the response for scattering of arbitrary incident patterns can be decomposed from the knowledge of this far field pattern.

The *Singular Sources Method* [Potthast] and the *No Response Test* [Luke/Potthast] can be realized by probing the region with particular incident patterns.

(D) (B) (E) (E)

Acoustic Scattering Overview of the Range Test Multi-Modality Adaptive Sensing

Adaptive Sensing

Completeness

If the far field pattern $u^{\infty}(\cdot, d)$ for scattering by all incident plane waves with direction $d \in \mathbb{S}$ of a fixed frequency is known, then the response for scattering of arbitrary incident patterns can be decomposed from the knowledge of this far field pattern.

The *Singular Sources Method* [Potthast] and the *No Response Test* [Luke/Potthast] can be realized by probing the region with particular incident patterns.

<ロ> (四) (四) (三) (三)

Acoustic Scattering Overview of the Range Test Multi-Modality Adaptive Sensing

Adaptive Sensing

- SSM uses all far field data to reconstruct the scattered field of a pointsource. The field at the source point goes to infinity if the source reaches the boundary from which we find the boundary.
- We can construct particular singular incident probes and scan the unknown area.
- The *No Response Test* locates the support of a scatterer from the far field pattern of one wave. It uses a set of sampling domains on which incident fields are small. If the response (the far field pattern) is small, the unknown object is inside the test domain, and outside otherwise.
- We can construct incident fields which are small on some area and employ a "domain-sampling".

Acoustic Scattering Overview of the Range Test Multi-Modality Adaptive Sensing

Adaptive Sensing

- SSM uses all far field data to reconstruct the scattered field of a pointsource. The field at the source point goes to infinity if the source reaches the boundary from which we find the boundary.
- We can construct particular singular incident probes and scan the unknown area.
- The *No Response Test* locates the support of a scatterer from the far field pattern of one wave. It uses a set of sampling domains on which incident fields are small. If the response (the far field pattern) is small, the unknown object is inside the test domain, and outside otherwise.
- We can construct incident fields which are small on some area and employ a "domain-sampling".

Acoustic Scattering Overview of the Range Test Multi-Modality Adaptive Sensing

Adaptive Sensing

- SSM uses all far field data to reconstruct the scattered field of a pointsource. The field at the source point goes to infinity if the source reaches the boundary from which we find the boundary.
- We can construct particular singular incident probes and scan the unknown area.
- The *No Response Test* locates the support of a scatterer from the far field pattern of one wave. It uses a set of sampling domains on which incident fields are small. If the response (the far field pattern) is small, the unknown object is inside the test domain, and outside otherwise.
- We can construct incident fields which are small on some area and employ a "domain-sampling".

(日) (四) (三) (三)

Acoustic Scattering Overview of the Range Test Multi-Modality Adaptive Sensing

Adaptive Sensing

- SSM uses all far field data to reconstruct the scattered field of a pointsource. The field at the source point goes to infinity if the source reaches the boundary from which we find the boundary.
- We can construct particular singular incident probes and scan the unknown area.
- The *No Response Test* locates the support of a scatterer from the far field pattern of one wave. It uses a set of sampling domains on which incident fields are small. If the response (the far field pattern) is small, the unknown object is inside the test domain, and outside otherwise.
- We can construct incident fields which are small on some area and employ a "domain-sampling".

<ロ> (四) (四) (三) (三)

Idea, Definitions and Algorithm Numerical Implementation Numerical Examples

Outline

2 Multiwave Range Test

- Idea, Definitions and Algorithm
- Numerical Implementation
- Numerical Examples

3 Summary and Outlook

(□) (□) (□) (□) (□)

르

Idea, Definitions and Algorithm Numerical Implementation Numerical Examples

Idea, Range Test

(□) (□) (Ξ) (Ξ) (Ξ) Ξ

Idea, Definitions and Algorithm Numerical Implementation Numerical Examples

Idea, Multiwave Range Test

(□) (□) (Ξ) (Ξ) (Ξ) Ξ

Idea, Definitions and Algorithm Numerical Implementation Numerical Examples

Multiwave Range Test(1)

 Test domain G of class C² with the property that the interior homogenous Dirichlet problem has only the trivial solution.
Construct a set of test domains G = G_τ with the index τ ∈ T.

• Single-layer potential on ∂G

$$(S_{\partial G}\varphi)(x) = \int_{\partial G} \Phi(x,y)\varphi(y)ds(y), \ x \in \mathbb{R}^m \setminus G$$

• Far field pattern of single-layer potential

$$(S^{\infty}_{\partial G}\varphi)(\hat{x}) = \gamma_m \int_{\partial G} e^{i\kappa\hat{x}\cdot y}\varphi(y) ds(y), \ \hat{x} \in \mathbb{S}^{m-1}$$

 Let Λ ⊂ S be the set of directions of given incident plane waves. Let the far field pattern u[∞](·, d) be given ∀d ∈ Λ

(日) (종) (종) (종)

Idea, Definitions and Algorithm Numerical Implementation Numerical Examples

Multiwave Range Test(1)

- Test domain G of class C² with the property that the interior homogenous Dirichlet problem has only the trivial solution.
 Construct a set of test domains G = G_τ with the index τ ∈ T.
- Single-layer potential on ∂G

$$(S_{\partial G}\varphi)(x) = \int_{\partial G} \Phi(x,y)\varphi(y)ds(y), \ x \in \mathbb{R}^m \setminus G$$

• Far field pattern of single-layer potential

$$(S^{\infty}_{\partial G}\varphi)(\hat{x}) = \gamma_m \int_{\partial G} e^{i\kappa\hat{x}\cdot y}\varphi(y)ds(y), \ \hat{x} \in \mathbb{S}^{m-1}$$

 Let Λ ⊂ S be the set of directions of given incident plane waves. Let the far field pattern u[∞](·, d) be given ∀d ∈ Λ

◆□→ ◆□→ ◆三→ ◆三→ -

Idea, Definitions and Algorithm Numerical Implementation Numerical Examples

Multiwave Range Test(1)

- Test domain G of class C² with the property that the interior homogenous Dirichlet problem has only the trivial solution.
 Construct a set of test domains G = G_τ with the index τ ∈ T.
- Single-layer potential on ∂G

$$(S_{\partial G}\varphi)(x) = \int_{\partial G} \Phi(x,y)\varphi(y)ds(y), \ x \in \mathbb{R}^m \setminus G$$

• Far field pattern of single-layer potential

$$(S^{\infty}_{\partial G} \varphi)(\hat{x}) = \gamma_m \int_{\partial G} e^{i\kappa \hat{x} \cdot y} \varphi(y) ds(y), \ \hat{x} \in \mathbb{S}^{m-1}$$

 Let Λ ⊂ S be the set of directions of given incident plane waves. Let the far field pattern u[∞](·, d) be given ∀d ∈ Λ

Idea, Definitions and Algorithm Numerical Implementation Numerical Examples

Multiwave Range Test(1)

- Test domain G of class C² with the property that the interior homogenous Dirichlet problem has only the trivial solution.
 Construct a set of test domains G = G_τ with the index τ ∈ T.
- Single-layer potential on ∂G

$$(S_{\partial G}\varphi)(x) = \int_{\partial G} \Phi(x,y)\varphi(y)ds(y), \ x \in \mathbb{R}^m \setminus G$$

• Far field pattern of single-layer potential

$$(S^{\infty}_{\partial G} \varphi)(\hat{x}) = \gamma_m \int_{\partial G} e^{i\kappa \hat{x} \cdot y} \varphi(y) ds(y), \ \hat{x} \in \mathbb{S}^{m-1}$$

 Let Λ ⊂ S be the set of directions of given incident plane waves. Let the far field pattern u[∞](·, d) be given ∀d ∈ Λ.

Idea, Definitions and Algorithm Numerical Implementation Numerical Examples

Multiwave Range Test(2)

• Assume the extensiability of u^s into $\mathbb{R}^m\backslash G$ and calculate the density with Tikhonov Regularization

$$\varphi_{d} = (\alpha I + S_{\partial G}^{\infty,*} S_{\partial G}^{\infty})^{-1} S_{\partial G}^{\infty,*} u^{\infty}(\cdot, d) \ \forall d \in \Lambda$$

• The mixed reciprocity relation (see [Potthast,2001] chapter 2) leads to

$$\Phi^{\infty}(-d,z) = \gamma_m u^s(z,d) = \gamma_m(S_{\partial G}\varphi_d)(z), \quad \forall d \in \Lambda, \forall z \in \mathbb{R}^m \backslash G$$

where $\Phi^{\infty}(\cdot, z)$ is the far field pattern of a point source in z.

• Using $S^{\infty}_{\partial G}$ in the same way as above

 $\psi_{z} = (\alpha I + S_{\partial G}^{\infty,*} S_{\partial G}^{\infty})^{-1} S_{\partial G}^{\infty,*} \Phi^{\infty}(\cdot, z), \quad \forall z \in \mathbb{R}^{m} \backslash G$

Idea, Definitions and Algorithm Numerical Implementation Numerical Examples

Multiwave Range Test(2)

• Assume the extensiability of u^s into $\mathbb{R}^m \setminus G$ and calculate the density with Tikhonov Regularization

$$\varphi_{d} = (\alpha I + S_{\partial G}^{\infty,*} S_{\partial G}^{\infty})^{-1} S_{\partial G}^{\infty,*} u^{\infty}(\cdot, d) \quad \forall d \in \Lambda$$

• The mixed reciprocity relation (see [Potthast,2001] chapter 2) leads to

$$\Phi^{\infty}(-d,z) = \gamma_m u^s(z,d) = \gamma_m(S_{\partial G}\varphi_d)(z), \quad \forall d \in \Lambda, \forall z \in \mathbb{R}^m \setminus G$$

where $\Phi^{\infty}(\cdot, z)$ is the far field pattern of a point source in z.

• Using $S^{\infty}_{\partial G}$ in the same way as above

 $\psi_{z} = (\alpha I + S_{\partial G}^{\infty,*} S_{\partial G}^{\infty})^{-1} S_{\partial G}^{\infty,*} \Phi^{\infty}(\cdot, z), \quad \forall z \in \mathbb{R}^{m} \backslash G$

(日) (四) (三) (三) (三)

Idea, Definitions and Algorithm Numerical Implementation Numerical Examples

Multiwave Range Test(2)

• Assume the extensiability of u^s into $\mathbb{R}^m \setminus G$ and calculate the density with Tikhonov Regularization

$$\varphi_{d} = (\alpha I + S_{\partial G}^{\infty,*} S_{\partial G}^{\infty})^{-1} S_{\partial G}^{\infty,*} u^{\infty}(\cdot, d) \quad \forall d \in \Lambda$$

• The mixed reciprocity relation (see [Potthast,2001] chapter 2) leads to

$$\Phi^{\infty}(-d,z) = \gamma_m u^s(z,d) = \gamma_m(S_{\partial G}\varphi_d)(z), \quad \forall d \in \Lambda, \forall z \in \mathbb{R}^m \backslash G$$

where $\Phi^{\infty}(\cdot, z)$ is the far field pattern of a point source in z.

• Using $S^{\infty}_{\partial G}$ in the same way as above

$$\psi_{z} = (\alpha I + S_{\partial G}^{\infty,*} S_{\partial G}^{\infty})^{-1} S_{\partial G}^{\infty,*} \Phi^{\infty}(\cdot, z), \ \forall z \in \mathbb{R}^{m} \backslash G$$

Idea, Definitions and Algorithm Numerical Implementation Numerical Examples

Multiwave Range Test(3)

- For $\overline{D} \subset G$ the fields $\Phi^{s}(\cdot, z)$ can be analytically extended up to $\mathbb{R}^{m} \setminus G$ uniformly for all $z \in \mathbb{R}^{m} \setminus G$.
- With this characterization we know that if all densities ψ_z are uniformly bounded for $z \in \mathbb{R}^m \setminus \overline{G}$ we know that $\overline{D} \subset G$.
- Checking of the boundedness is done via the norm

 $\mu(z) = \|\psi_z\|_{L^2(\partial G)}$

• We now obtain reconstructions of D by

$$D_{rec} = \bigcap_{\|\mu(z)\| < C} G_{\tau}$$

Idea, Definitions and Algorithm Numerical Implementation Numerical Examples

Multiwave Range Test(3)

- For $\overline{D} \subset G$ the fields $\Phi^{s}(\cdot, z)$ can be analytically extended up to $\mathbb{R}^{m} \setminus G$ uniformly for all $z \in \mathbb{R}^{m} \setminus G$.
- With this characterization we know that if all densities ψ_z are uniformly bounded for $z \in \mathbb{R}^m \setminus \overline{G}$ we know that $\overline{D} \subset G$.
- Checking of the boundedness is done via the norm

 $\mu(z) = \|\psi_z\|_{L^2(\partial G)}$

• We now obtain reconstructions of D by

$$D_{rec} = \bigcap_{\|\mu(z)\| < C} G_{\tau}$$

Idea, Definitions and Algorithm Numerical Implementation Numerical Examples

Multiwave Range Test(3)

- For $\overline{D} \subset G$ the fields $\Phi^{s}(\cdot, z)$ can be analytically extended up to $\mathbb{R}^{m} \setminus G$ uniformly for all $z \in \mathbb{R}^{m} \setminus G$.
- With this characterization we know that if all densities ψ_z are uniformly bounded for $z \in \mathbb{R}^m \setminus \overline{G}$ we know that $\overline{D} \subset G$.
- Checking of the boundedness is done via the norm

$$\mu(z) = \|\psi_z\|_{L^2(\partial G)}$$

 \bullet We now obtain reconstructions of D by

$$D_{rec} = igcap_{\|\mu(z)\| < C} G_{ au}$$

Idea, Definitions and Algorithm Numerical Implementation Numerical Examples

Multiwave Range Test(3)

- For $\overline{D} \subset G$ the fields $\Phi^{s}(\cdot, z)$ can be analytically extended up to $\mathbb{R}^{m} \setminus G$ uniformly for all $z \in \mathbb{R}^{m} \setminus G$.
- With this characterization we know that if all densities ψ_z are uniformly bounded for $z \in \mathbb{R}^m \setminus \overline{G}$ we know that $\overline{D} \subset G$.
- Checking of the boundedness is done via the norm

$$\mu(z) = \|\psi_z\|_{L^2(\partial G)}$$

• We now obtain reconstructions of D by

$$D_{rec} = igcap_{\|\mu(z)\| < C} G_{ au}$$

Idea, Definitions and Algorithm Numerical Implementation Numerical Examples

Numerical Implementation

• construct test domains G_x from a reference domain G_0 by

$$G_x := G_0 + x$$

• calculations for different test domains *G*_× is done in a efficient way:

$$(S^{\infty}_{\partial G_{x}}\varphi)(\hat{x}) = \int_{\partial G_{x}} e^{-i\kappa\hat{x}\cdot y}\varphi(y)ds(y) = e^{-i\kappa\hat{x}\cdot x}(S^{\infty}_{\partial G_{0}}\tilde{\varphi})(\hat{x})$$

with $\tilde{\varphi}(y) := \varphi(y+x)$

• choose evaluation points $z \in \mathbb{R} \setminus G_x$ around the boundary and consider a fixed constellation of z and G_x . This can be done because we know

$$\lim_{z\to\partial D}\mu(z)\to\infty$$

Idea, Definitions and Algorithm Numerical Implementation Numerical Examples

Numerical Implementation

• construct test domains G_x from a reference domain G_0 by

$$G_x := G_0 + x$$

 calculations for different test domains G_x is done in a efficient way:

$$(S^{\infty}_{\partial G_{x}}\varphi)(\hat{x}) = \int_{\partial G_{x}} e^{-i\kappa\hat{x}\cdot y}\varphi(y)ds(y) = e^{-i\kappa\hat{x}\cdot x}(S^{\infty}_{\partial G_{0}}\tilde{\varphi})(\hat{x})$$

with $ilde{arphi}(y) := arphi(y+x)$

 choose evaluation points z ∈ ℝ\G_x around the boundary and consider a fixed constellation of z and G_x. This can be done because we know

$$\lim_{z\to\partial D}\mu(z)\to\infty$$

Idea, Definitions and Algorithm Numerical Implementation Numerical Examples

Numerical Implementation

• construct test domains G_x from a reference domain G_0 by

$$G_x := G_0 + x$$

 calculations for different test domains G_x is done in a efficient way:

$$(S^{\infty}_{\partial G_{\mathsf{x}}}\varphi)(\hat{x}) = \int_{\partial G_{\mathsf{x}}} e^{-i\kappa\hat{x}\cdot y}\varphi(y)ds(y) = e^{-i\kappa\hat{x}\cdot x}(S^{\infty}_{\partial G_{0}}\tilde{\varphi})(\hat{x})$$

with $ilde{arphi}(y) := arphi(y+x)$

• choose evaluation points $z \in \mathbb{R} \setminus G_x$ around the boundary and consider a fixed constellation of z and G_x . This can be done because we know

$$\lim_{z\to\partial D}\mu(z)\to\infty$$

Idea, Definitions and Algorithm Numerical Implementation Numerical Examples

Numerical Implementation

(ロ) (部) (注) (注) (注)

Idea, Definitions and Algorithm Numerical Implementation Numerical Examples

Numerical Implementation

(ロ) (部) (注) (注) (注)

Idea, Definitions and Algorithm Numerical Implementation Numerical Examples

Numerical Implementation

• we map μ onto a grid \mathcal{G} by $z \mapsto \mu(\mathcal{G}_x)$.

Figure: Reconstruction steps

- Repeat calculation for all constellations.
- Take the unification of the minima over all images and make a cutoff.

Idea, Definitions and Algorithm Numerical Implementation Numerical Examples

Numerical Implementation

• we map μ onto a grid \mathcal{G} by $z \mapsto \mu(\mathcal{G}_x)$.

Figure: Reconstruction steps

- Repeat calculation for all constellations.
- Take the unification of the minima over all images and make a cutoff.

Idea, Definitions and Algorithm Numerical Implementation Numerical Examples

Numerical Implementation

• we map μ onto a grid \mathcal{G} by $z \mapsto \mu(\mathcal{G}_x)$.

Figure: Reconstruction steps

- Repeat calculation for all constellations.
- Take the unification of the minima over all images and make a cutoff.

Idea, Definitions and Algorithm Numerical Implementation Numerical Examples

Numerical Example (Dirichlet)

Figure: Total field resulting from an incident plane wave from the left.

Figure: Reconstruction of a torpedo with 20 rotations

(□) (□) (□) (□) (□)

4

Parameters

Idea, Definitions and Algorithm Numerical Implementation Numerical Examples

Numerical Example (Dirichlet)

Figure: Total field resulting from an incident plane wave from the left.

Figure: Reconstruction of a kite with 20 rotations

イロト イヨト イヨト イヨト

Idea, Definitions and Algorithm Numerical Implementation Numerical Examples

Numerical Example (Neumann)

Figure: Total field resulting from an incident plane wave from the left.

Figure: Reconstruction of a torpedo with 20 rotations

(□) (□) (□) (□) (□)

르

Parameters

Idea, Definitions and Algorithm Numerical Implementation Numerical Examples

Numerical Example (Neumann)

Figure: Total field resulting from an incident plane wave from the left.

Figure: Reconstruction of a kite with 20 rotations

イロト イヨト イヨト イヨト

Idea, Definitions and Algorithm Numerical Implementation Numerical Examples

further Tests

Figure: Multiwave Range Test. 2 incident plane waves.

Figure: Multiwave Range Test. 3 incident plane waves.

(日) (四) (三) (三)

Introduction Idea, Definitions and Algorithm Multiwave Range Test Summary and Outlook Numerical Examples

Figure: Multiwave Range Test. 4 incident plane waves.

Figure: Multiwave Range Test. 5 incident plane waves.

(日) (四) (三) (三)

Introduction Idea, Definitions and Algorithm Multiwave Range Test Summary and Outlook Numerical Examples

Figure:MultiwaveRangeTest.10 incidentplanewaves.

Figure:MultiwaveRangeTest.40 incidentplanewaves.

(日) (四) (三) (三) (三)

Summary Outlook

Outline

1 Introduction

2 Multiwave Range Test

3 Summary and Outlook

(日) (四) (三) (三) (三)

Summary Outlook

Summary

Summary

- SSM and No Response Test can be used in adaptive sensing.
- The *Multiwave Range Test* can be used in multi-modality frameworks.
- *Multiwave Range Test* is an extension to the (one wave) *Range Test* to handle multiple incident waves in a special way.
- it uses all (or many) waves to reconstruct domains without using boundary conditions.
- It can fully reconstruct the shape of the scatterer and numerics show it can reconstruct non-convex domains.

Summary Outlook

Outlook

Outlook

- Numerics in multi-modality and adaptive Sensing.
- 3D
- Use non-sphere test domains. E.g. Sphere with slit.
- Implementation of intersection of test domains.
- (Direct) comparisons to other multiwave algorithms.

Outlook

Bibliography

🛸 R. Potthast.

Point sources and multipoles in inverse scattering theory, volume 427 of Chapman & Hall/CRC Research Notes in Mathematics.

Chapman & Hall/CRC, Boca Raton, FL, 2001.

Outline

Jochen Schulz The Multiwave Range Test

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Numerical Example (Dirichlet)

Figure: Total field resulting from an incident plane wave from the left.

Figure: Reconstruction of a torpedo with 20 rotations

Numerical Example (Dirichlet)

Figure: Total field resulting from an incident plane wave from the left.

Figure: Reconstruction of a kite with 20 rotations

Numerical Example (Neumann)

Figure: Total field resulting from an incident plane wave from the left.

Figure: Reconstruction of a torpedo with 20 rotations

Numerical Example (Neumann)

Figure: Total field resulting from an incident plane wave from the left.

Figure: Reconstruction of a kite with 20 rotations