Homepage of Felix Krahmer
Institut für Numerische und Angewandte Mathematik


As I am now at Technische Universität München, this page will no longer be updated.

Submitted articles

  • Sandbichler, M., Krahmer, F., Berer, T., Burgholzer, P., Haltmeier, M.. A Novel Compressed Sensing Scheme for Photoacoustic Tomography. preprint. 2015. Preprint download [bibtex-entry]
  • Krahmer, Felix, Needell, Deanna, Ward, Rachel. Compressive Sensing with Redundant Dictionaries and Structured Measurements. preprint. 2015. Preprint download [bibtex-entry]
  • Krahmer, F., Ward, R.. A unified framework for linear dimensionality reduction in L1. preprint. 2014. Preprint download [bibtex-entry]
  • Israel, Arie, Krahmer, Felix, Ward, Rachel. An arithmetic-geometric mean inequality for products of three matrices. preprint. 2014. Preprint download [bibtex-entry]

Refereed journal articles

  • Iwen, M., Krahmer, F.. Fast Subspace Approximation via Greedy Least-Squares. Constr. Approx.. to appear. [pdf] [bibtex-entry]
  • Gross, D., Krahmer, F., Küng, R. Improved Recovery Guarantees for Phase Retrieval from Coded Diffraction Patterns. Appl. Comput. Harmon. Anal.. to appear. [pdf] [bibtex-entry]
  • Gross, D., Krahmer, F., Küng, R. A Partial Derandomization of PhaseLift using Spherical Designs. J Fourier Anal. Appl.. to appear. [pdf] [bibtex-entry]
  • Krahmer, F., Saab, R., Yilmaz, Ö. Sigma-Delta quantization of sub-Gaussian frame expansions and its application to compressed sensing. Inform. Inference 3(1): 40-58. 2014. [pdf] [bibtex-entry]
  • Krahmer, F., Rauhut, H.. Structured random measurements in signal processing. GAMM-Mitteilungen 37(2): 217-238. 2014. doi:10.1002/gamm.201410010 [pdf] [bibtex-entry]
  • Krahmer, F., Pfander, G.. Local sampling and approximation of operators with bandlimited Kohn-Nirenberg symbols. Constr. Approx. 39(3): 541-572. 2014. [pdf] [bibtex-entry]
  • Krahmer, F., Mendelson, S., Rauhut, H.. Suprema of Chaos Processes and the Restricted Isometry Property. Comm. Pure Appl. Math. 67(11): 1877-1904. 2014. [pdf] [bibtex-entry]
  • Krahmer, F., Kutyniok, G., Lemvig, J. Sparse Matrices in Frame Theory. Computational Statistics 29: 547-568. 2014. [pdf] [bibtex-entry]
  • Feng, J., Krahmer, F. An RIP approach to Sigma-Delta quantization for compressed sensing. IEEE Signal Process. Lett. 21(11): 1351-1355. 2014. [pdf] [bibtex-entry]
  • F. Krahmer, R. Ward. Stable and robust sampling strategies for compressive imaging. IEEE Trans. Image Proc. 23(2): 612-622. 2014. [pdf] [bibtex-entry]
  • Krahmer, F., Kutyniok, G., Lemvig, J.. Sparsity and spectral properties of dual frames. Linear Algebra and its Applications 439(4): 982 - 998. 2013. [pdf] [bibtex-entry]
  • Krahmer, F., Ward, R.. Lower bounds for the error decay incurred by coarse quantization schemes. Appl. Comput. Harmonic Anal. 32(1): 131-138. 2012. [pdf] [bibtex-entry]
  • Krahmer, F., Saab, R., Ward, R.. Root-exponential accuracy for coarse quantization of finite frame expansions. IEEE J. Inf. Theo. 58(2): 1069-1079. 2012. [pdf] [bibtex-entry]
  • Burr, M., Krahmer, F.. SqFreeEVAL: An (almost) optimal real-root isolation algorithm. Journal of Symbolic Computation 47(2): 153-166. 2012. [pdf] [bibtex-entry]
  • Percy Deift, C. Sinan Güntürk, Felix Krahmer. An Optimal Family of Exponentially Accurate One-Bit Sigma-Delta Quantization Schemes. Comm. Pure Appl. Math. 64(7): 883-919. 2011. [pdf] [bibtex-entry]
  • Krahmer, F., Ward, R.. New and improved Johnson-Lindenstrauss embeddings via the Restricted Isometry Property. SIAM J. Math. Anal. 43(3): SIAM. 1269-1281. 2011. [pdf] [bibtex-entry]
  • Casazza, P., Heinecke, A., Krahmer, F., Kutyniok, G.. Optimally sparse frames. IEEE J. Inf. Theo. 57(11): 7279-7287. 2011. [pdf] [bibtex-entry]
  • Krahmer, Felix, Pfander, Götz E., Rashkov, Peter. Uncertainty in time-frequency representations on finite abelian groups and applications. Appl. Comput. Harmon. Anal. 25(2): 209-225. 2008. [pdf] [bibtex-entry]


  • Felix Krahmer. 2009. Novel Schemes for Sigma-Delta Modulation: From Improved Exponential Accuracy to Low-Complexity Design. New York University. download [bibtex-entry]

Technical reports

  • Israel, Arie, Krahmer, Felix, Ward, Rachel. An arithmetic-geometric mean inequality for products of three matrices. arXiv preprint arXiv:1411.0333. Jacobs University, Bremen. 2014. [bibtex-entry]
  • Burr, Michael, Krahmer, Felix, Yap, Chee. Continuous Amortization: A non-probabilistic adaptive analysis technique. Electronic Colloquium on Computational Complexity. 2009. [bibtex-entry]

The linked pdf-files do not necessarily coincide with the articles' published versions.

All publications as BibTeX-file: Publications


   Jun.-Prof. Dr. Felix Krahmer
   Lotzestraße 16-18
   Room 104
   37083 Göttingen
   Tel: +49 (0)551-3910584