Module regpy.solvers.nonlinear.irgnm
Classes
class IrgnmCG (setting, data, regpar, regpar_step=0.6666666666666666, init=None, cg_pars={'reltolx': 0.3333333333333333, 'reltoly': 0.3333333333333333, 'all_tol_criteria': False}, cgstop=1000, inner_it_logging_level=30, simplified_op=None)
-
The Iteratively Regularized Gauss-Newton Method method. In each iteration, minimizes
\Vert(x_{n}) + T'[x_n] h - data\Vert^{2} + regpar_{n} \cdot \Vert x_{n} + h - init\Vert^{2}
where T is a Frechet-differentiable operator, using
TikhonovCG
. regpar_n is a decreasing geometric sequence of regularization parameters.Parameters
setting
:RegularizationSetting
- The setting of the forward problem.
data
:array-like
- The measured data.
regpar
:float
- The initial regularization parameter. Must be positive.
regpar_step
:float
, optional- The factor by which to reduce the
regpar
in each iteration. Default: 2/3. init
:array-like
, optional- The initial guess. Default: the zero array.
cg_pars
:dict
- Parameter dictionary for stopping of inner CG iteration passed to the inner
TikhonovCG
solver. cg_stop
:int
- Maximum number of inner CG iterations
simplified_op
:Operator
- An operator the with the same mapping properties as setting.op, which is cheaper to evaluate. It is used for the derivative in the Newton equation. Default: None - then the derivative of setting.op is used.
Expand source code
class IrgnmCG(RegSolver): r"""The Iteratively Regularized Gauss-Newton Method method. In each iteration, minimizes \[ \Vert(x_{n}) + T'[x_n] h - data\Vert^{2} + regpar_{n} \cdot \Vert x_{n} + h - init\Vert^{2} \] where \(T\) is a Frechet-differentiable operator, using `regpy.solvers.linear.tikhonov.TikhonovCG`. \(regpar_n\) is a decreasing geometric sequence of regularization parameters. Parameters ---------- setting : regpy.solvers.RegularizationSetting The setting of the forward problem. data : array-like The measured data. regpar : float The initial regularization parameter. Must be positive. regpar_step : float, optional The factor by which to reduce the `regpar` in each iteration. Default: \(2/3\). init : array-like, optional The initial guess. Default: the zero array. cg_pars : dict Parameter dictionary for stopping of inner CG iteration passed to the inner `regpy.solvers.linear.tikhonov.TikhonovCG` solver. cg_stop: int Maximum number of inner CG iterations simplified_op : Operator An operator the with the same mapping properties as setting.op, which is cheaper to evaluate. It is used for the derivative in the Newton equation. Default: None - then the derivative of setting.op is used. """ def __init__( self, setting, data, regpar, regpar_step=2 / 3, init=None, cg_pars={'reltolx': 1/3., 'reltoly': 1/3.,'all_tol_criteria': False}, cgstop=1000, inner_it_logging_level = logging.WARNING, simplified_op = None ): super().__init__(setting) self.data = data """The measured data.""" if init is None: init = self.op.domain.zeros() self.init = np.asarray(init) """The initial guess.""" self.x = np.copy(self.init) if simplified_op: self.simplified_op = simplified_op _, self.deriv = self.simplified_op.linearize(self.x) self.y = self.op(self.x) else: self.y, self.deriv = self.op.linearize(self.x) self.regpar = regpar """The regularizaton parameter.""" self.regpar_step = regpar_step """The `regpar` factor.""" self.cg_pars = cg_pars """The additional `regpy.solvers.linear.tikhonov.TikhonovCG` parameters.""" self.cgstop = cgstop """Maximum number of iterations for inner CG solver, or None""" self.inner_it_logging_level = inner_it_logging_level self._nr_inner_steps = 0 def _next(self): if self.cgstop is not None: stoprule = CountIterations(self.cgstop) else: stoprule = CountIterations(2**15) # Disable info logging, but don't override log level for all CountIterations instances. stoprule.log = self.log.getChild('CountIterations') stoprule.log.setLevel(logging.WARNING) # Running Tikhonov solver step, _ = TikhonovCG( setting=RegularizationSetting(self.deriv, self.h_domain, self.h_codomain), data=self.data - self.y, regpar=self.regpar, xref=self.init - self.x, **self.cg_pars, logging_level = self.inner_it_logging_level ).run(stoprule=stoprule) self.x += step if hasattr(self,'simplified_op'): _, self.deriv = self.simplified_op.linearize(self.x) self.y = self.op(self.x) else: self.y , self.deriv = self.op.linearize(self.x) self.regpar *= self.regpar_step self._nr_inner_steps = stoprule.iteration self.log.info('its.{}: alpha={}, CG its:{}'.format(self.iteration_step_nr,self.regpar,self._nr_inner_steps)) def nr_inner_its(self): return self._nr_inner_steps
Ancestors
Instance variables
var data
-
The measured data.
var init
-
The initial guess.
var regpar
-
The regularizaton parameter.
var regpar_step
-
The
regpar
factor. var cg_pars
-
The additional
TikhonovCG
parameters. var cgstop
-
Maximum number of iterations for inner CG solver, or None
Methods
def nr_inner_its(self)
Inherited members
class LevenbergMarquardt (setting, data, regpar, regpar_step=0.6666666666666666, init=None, cg_pars={'reltolx': 0.3333333333333333, 'reltoly': 0.3333333333333333, 'all_tol_criteria': False}, cgstop=1000, inner_it_logging_level=30, simplified_op=None)
-
The Levenberg-Marquardt method. In each iteration, minimizes
\Vert(x_{n}) + T'[x_n] h - data\Vert^{2} + regpar_{n} \cdot \Vert h\Vert^{2}
where T is a Frechet-differentiable operator, using
TikhonovCG
. regpar_n is a decreasing geometric sequence of regularization parameters.Parameters
setting
:RegularizationSetting
- The setting of the forward problem.
data
:array-like
- The measured data.
regpar
:float
- The initial regularization parameter. Must be positive.
regpar_step
:float
, optional- The factor by which to reduce the
regpar
in each iteration. Default: 2/3. init
:array-like
, optional- The initial guess. Default: the zero array.
cg_pars
:dict
- Parameter dictionary for stopping of inner CG iteration passed to the inner
TikhonovCG
solver. cg_stop
:int
- Maximum number of inner CG iterations
simplified_op
:Operator
- An operator the with the same mapping properties as setting.op, which is cheaper to evaluate. It is used for the derivative in the Newton equation. Default: None - then the derivative of setting.op is used.
Expand source code
class LevenbergMarquardt(RegSolver): r"""The Levenberg-Marquardt method. In each iteration, minimizes \[ \Vert(x_{n}) + T'[x_n] h - data\Vert^{2} + regpar_{n} \cdot \Vert h\Vert^{2} \] where \(T\) is a Frechet-differentiable operator, using `regpy.solvers.linear.tikhonov.TikhonovCG`. \(regpar_n\) is a decreasing geometric sequence of regularization parameters. Parameters ---------- setting : regpy.solvers.RegularizationSetting The setting of the forward problem. data : array-like The measured data. regpar : float The initial regularization parameter. Must be positive. regpar_step : float, optional The factor by which to reduce the `regpar` in each iteration. Default: \(2/3\). init : array-like, optional The initial guess. Default: the zero array. cg_pars : dict Parameter dictionary for stopping of inner CG iteration passed to the inner `regpy.solvers.linear.tikhonov.TikhonovCG` solver. cg_stop: int Maximum number of inner CG iterations simplified_op : Operator An operator the with the same mapping properties as setting.op, which is cheaper to evaluate. It is used for the derivative in the Newton equation. Default: None - then the derivative of setting.op is used. """ def __init__( self, setting, data, regpar, regpar_step=2 / 3, init=None, cg_pars={'reltolx': 1/3., 'reltoly': 1/3.,'all_tol_criteria': False}, cgstop=1000, inner_it_logging_level = logging.WARNING, simplified_op = None ): super().__init__(setting) self.data = data """The measured data.""" if init is None: init = self.op.domain.zeros() self.init = np.asarray(init) """The initial guess.""" self.x = np.copy(self.init) if simplified_op: self.simplified_op = simplified_op _, self.deriv = self.simplified_op.linearize(self.x) self.y = self.op(self.x) else: self.y, self.deriv = self.op.linearize(self.x) self.regpar = regpar """The regularizaton parameter.""" self.regpar_step = regpar_step """The `regpar` factor.""" self.cg_pars = cg_pars """The additional `regpy.solvers.linear.tikhonov.TikhonovCG` parameters.""" self.cgstop = cgstop """Maximum number of iterations for inner CG solver, or None""" self.inner_it_logging_level = inner_it_logging_level self._nr_inner_steps = 0 def _next(self): if self.cgstop is not None: stoprule = CountIterations(self.cgstop) else: stoprule = CountIterations(2**15) # Disable info logging, but don't override log level for all CountIterations instances. stoprule.log = self.log.getChild('CountIterations') stoprule.log.setLevel(logging.WARNING) # Running Tikhonov solver step, _ = TikhonovCG( setting=RegularizationSetting(self.deriv, self.h_domain, self.h_codomain), data=self.data - self.y, regpar=self.regpar, **self.cg_pars, logging_level = self.inner_it_logging_level ).run(stoprule=stoprule) self.x += step if hasattr(self,'simplified_op'): _, self.deriv = self.simplified_op.linearize(self.x) self.y = self.op(self.x) else: self.y , self.deriv = self.op.linearize(self.x) self.regpar *= self.regpar_step self._nr_inner_steps = stoprule.iteration self.log.info('its.{}: alpha={}, CG its:{}'.format(self.iteration_step_nr,self.regpar,self._nr_inner_steps)) def nr_inner_its(self): return self._nr_inner_steps
Ancestors
Instance variables
var data
-
The measured data.
var init
-
The initial guess.
var regpar
-
The regularizaton parameter.
var regpar_step
-
The
regpar
factor. var cg_pars
-
The additional
TikhonovCG
parameters. var cgstop
-
Maximum number of iterations for inner CG solver, or None
Methods
def nr_inner_its(self)
Inherited members
class IrgnmCGPrec (setting, data, regpar, regpar_step=0.6666666666666666, init=None, cg_pars=None, cgstop=None, precpars=None)
-
The Iteratively Regularized Gauss-Newton Method method. In each iteration, minimizes \Vert F(x_n) + F'[x_n] h - data\Vert^2 + \text{regpar}_n \Vert x_n + h - init\Vert^2 where F is a Frechet-differentiable operator, by solving in every iteration step the problem \underset{Mh = g}{\mathrm{minimize}} \Vert T (M g) - rhs\Vert^2 + \text{regpar} \Vert M (g - x_{ref})\Vert^2 with `regpy.solvers.linear.tikhonov.TikhonovCG' and spectral preconditioner M. The spectral preconditioner M is chosen, such that: M A M \approx Id where A = (Gram_{domain}^{-1} T^t Gram_{codomain} T + \text{regpar} Id) = T^* T + \text{regpar} Id
Note that the Tikhonov CG solver computes an orthonormal basis of vectors spanning the Krylov subspace of the order of the number of iterations: \{v_j\} We approximate A by the operator: C_k: v \mapsto \text{regpar} v +\sum_{j=1}^k \langle v, v_j\rangle lambda_j v_j where lambda are the biggest eigenvalues of T*T.
We choose: M = C_k^{-1/2} and M^{-1} = C_k^{1/2}
It is: M : v \mapsto \frac{1}{\sqrt{\text{regpar}}} v + \sum_{j=1}^{k} \left[\frac{1}{\sqrt{\lambda_j+\text{regpar}}}-\frac{1}{\sqrt{\text{regpar}}}\right] \langle v_j, v\rangle v_j M^{-1}: v \mapsto \sqrt{\text{regpar}} v + \sum_{j=1}^{k} \left[\sqrt{\lambda_j+\text{regpar}} -\sqrt{\text{regpar}}\right] \langle v_j, v\rangle v_j.
At the moment this method does not work for complex domains/codomains
Parameters
setting
:RegularizationSetting
- The setting of the forward problem.
data
:array-like
- The measured data.
regpar
:float
- The initial regularization parameter. Must be positive.
regpar_step
:float
, optional- The factor by which to reduce the
regpar
in each iteration. Default:2/3
. init
:array-like
, optional- The initial guess. Default: the zero array.
cg_pars
:dict
- Parameter dictionary passed to the inner
TikhonovCG
solver. precpars
:dict
- Parameter dictionary passed to the computation of the spectral preconditioner
Expand source code
class IrgnmCGPrec(RegSolver): r"""The Iteratively Regularized Gauss-Newton Method method. In each iteration, minimizes \[ \Vert F(x_n) + F'[x_n] h - data\Vert^2 + \text{regpar}_n \Vert x_n + h - init\Vert^2 \] where \(F\) is a Frechet-differentiable operator, by solving in every iteration step the problem \[ \underset{Mh = g}{\mathrm{minimize}} \Vert T (M g) - rhs\Vert^2 + \text{regpar} \Vert M (g - x_{ref})\Vert^2 \] with `regpy.solvers.linear.tikhonov.TikhonovCG' and spectral preconditioner \(M\). The spectral preconditioner \(M\) is chosen, such that: \[M A M \approx Id\] where \(A = (Gram_{domain}^{-1} T^t Gram_{codomain} T + \text{regpar} Id) = T^* T + \text{regpar} Id\) Note that the Tikhonov CG solver computes an orthonormal basis of vectors spanning the Krylov subspace of the order of the number of iterations: \(\{v_j\}\) We approximate A by the operator: \[C_k: v \mapsto \text{regpar} v +\sum_{j=1}^k \langle v, v_j\rangle lambda_j v_j\] where lambda are the biggest eigenvalues of \(T*T\). We choose: \(M = C_k^{-1/2} and M^{-1} = C_k^{1/2}\) It is: \[M : v \mapsto \frac{1}{\sqrt{\text{regpar}}} v + \sum_{j=1}^{k} \left[\frac{1}{\sqrt{\lambda_j+\text{regpar}}}-\frac{1}{\sqrt{\text{regpar}}}\right] \langle v_j, v\rangle v_j\] \[M^{-1}: v \mapsto \sqrt{\text{regpar}} v + \sum_{j=1}^{k} \left[\sqrt{\lambda_j+\text{regpar}} -\sqrt{\text{regpar}}\right] \langle v_j, v\rangle v_j.\] At the moment this method does not work for complex domains/codomains Parameters ---------- setting : regpy.solvers.RegularizationSetting The setting of the forward problem. data : array-like The measured data. regpar : float The initial regularization parameter. Must be positive. regpar_step : float, optional The factor by which to reduce the `regpar` in each iteration. Default: `2/3`. init : array-like, optional The initial guess. Default: the zero array. cg_pars : dict Parameter dictionary passed to the inner `regpy.solvers.linear.tikhonov.TikhonovCG` solver. precpars : dict Parameter dictionary passed to the computation of the spectral preconditioner """ def __init__( self, setting, data, regpar, regpar_step=2 / 3, init=None, cg_pars=None,cgstop =None, precpars=None ): super().__init__(setting) self.data = data """The measured data.""" if init is None: init = self.op.domain.zeros() self.init = np.asarray(init) """The initial guess.""" self.x = np.copy(self.init) self.y, self.deriv = self.op.linearize(self.x) self.regpar = regpar """The regularizaton parameter.""" self.regpar_step = regpar_step """The `regpar` factor.""" if cg_pars is None: cg_pars = {} self.cg_pars = cg_pars self.cgstop = cgstop """The additional `regpy.solvers.linear.tikhonov.TikhonovCG` parameters.""" self.k=0 """Counts the number of iterations""" if precpars is None: self.krylov_order = 6 """Order of krylov space in which the spetcral preconditioner is computed""" self.number_eigenvalues = 4 """Spectral preonditioner computed only from the biggest eigenvalues """ else: self.krylov_order = precpars['krylov_order'] self.number_eigenvalues = precpars['number_eigenvalues'] self.krylov_basis = np.zeros((self.krylov_order, self.h_domain.vecsp.size),dtype=self.op.domain.dtype) """Orthonormal Basis of Krylov subspace""" self.krylov_basis_img = np.zeros((self.krylov_order, *self.h_codomain.vecsp.shape),dtype=self.op.codomain.dtype) """Image of the Krylov Basis under the derivative of the operator""" self.krylov_basis_img_2 = np.zeros((self.krylov_order, *self.h_codomain.vecsp.shape),dtype=self.op.codomain.dtype) """Gram matrix applied to image of the Krylov Basis""" self.need_prec_update = True """Is an update of the preconditioner needed""" def _next(self): if self.cgstop is not None: stoprule = CountIterations(self.cgstop) # Disable info logging, but don't override log level for all # CountIterations instances. else: stoprule = CountIterations(2**15) stoprule.log = self.log.getChild('CountIterations') stoprule.log.setLevel(logging.WARNING) self.log.info('Running Tikhonov solver.') if self.need_prec_update: self.log.info('Spectral Preconditioner needs to be updated') step, _ = TikhonovCG( setting=RegularizationSetting(self.deriv, self.h_domain, self.h_codomain), data=self.data - self.y, regpar=self.regpar, krylov_basis=self.krylov_basis, xref=self.init - self.x, **self.cg_pars ).run(stoprule=stoprule) for i in range(0, self.krylov_order): self.krylov_basis_img[i, :] = self.deriv(self.krylov_basis[i, :]) self.krylov_basis_img_2[i, :] = self.h_codomain.gram(self.krylov_basis_img[i, :]) self.need_prec_update = False self._preconditioner_update() self.log.info('Spectral preconditioner updated') else: preconditioner = MatrixMultiplication(self.M, domain=self.h_domain.vecsp, codomain=self.h_domain.vecsp) step, _ = TikhonovCG( setting=RegularizationSetting(self.deriv, self.h_domain, self.h_codomain), data=self.data - self.y, regpar=self.regpar, xref=self.init-self.x, preconditioner=preconditioner, **self.cg_pars ).run(stoprule=stoprule) step = self.M @ step self.x += step self.y, self.deriv = self.op.linearize(self.x) self.regpar *= self.regpar_step self.k+=1 if (int(np.sqrt(self.k)))**2 == self.k: self.need_prec_update = True def _preconditioner_update(self): """perform lanzcos method to calculate the preconditioner""" L = np.zeros((self.krylov_order, self.krylov_order), dtype=self.op.domain.dtype) for i in range(0, self.krylov_order): L[i, i] = np.vdot(self.krylov_basis_img[i, :], self.krylov_basis_img_2[i, :]) for j in range(i+1, self.krylov_order): L[i, j] = np.vdot(self.krylov_basis_img[i, :], self.krylov_basis_img_2[j, :]) L[j, i] = L[i, j].conjugate() """Express T*T in Krylov_basis""" lamb, U = eigsh(L, self.number_eigenvalues, which='LM') """Perform the computation of eigenvalues and eigenvectors""" diag_lamb = np.diag( np.sqrt(1 / (lamb + self.regpar) ) - np.sqrt(1 / self.regpar) ) M_krylov = U @ diag_lamb @ U.transpose().conjugate() self.M = self.krylov_basis.transpose().conjugate() @ M_krylov @ self.krylov_basis + np.sqrt(1/self.regpar) * np.identity(self.krylov_basis.shape[1]) """Compute preconditioner""" diag_lamb = np.diag ( np.sqrt(lamb + self.regpar) - np.sqrt(self.regpar) ) M_krylov = U @ diag_lamb @ U.transpose().conjugate() self.M_inverse = self.krylov_basis.transpose().conjugate() @ M_krylov @ self.krylov_basis + np.sqrt(self.regpar) * np.identity(self.krylov_basis.shape[1]) """Compute inverse preconditioner matrix"""
Ancestors
Instance variables
var data
-
The measured data.
var init
-
The initial guess.
var regpar
-
The regularizaton parameter.
var regpar_step
-
The
regpar
factor. var cgstop
-
The additional
TikhonovCG
parameters. var k
-
Counts the number of iterations
var krylov_basis
-
Orthonormal Basis of Krylov subspace
var krylov_basis_img
-
Image of the Krylov Basis under the derivative of the operator
var krylov_basis_img_2
-
Gram matrix applied to image of the Krylov Basis
var need_prec_update
-
Is an update of the preconditioner needed
Inherited members