Back to Gerlind Plonka's home page
Back to peer-reviewed publications
Back to Non-peer-reviewed publications (proceedings)

Prof. Dr. Gerlind Plonka

University of Göttingen, Institute for Numerical and Applied Mathematics

May 2, 2021


[3]  Nadiia Derevianko and Gerlind Plonka
Exact Reconstruction of Extended Exponential Sums Using Rational Approximation of their Fourier Coefficients.
Universität Göttingen, Institut für Numerische und Angewandte Mathematik, Preprint 2021,
(arXiv preprint#2103.07743)
[2]  Hanna Knirsch, Markus Petz, and Gerlind Plonka
Optimal Rank-1 Hankel Approximation of Matrices: Frobenius Norm, Spectral Norm, and Cadzow's Algorithm.
Universität Göttingen, Institut für Numerische und Angewandte Mathematik, Preprint 2020,
(arXiv preprint#2004.11099)
[1]  Jakob Alexander Geppert and Gerlind Plonka
Frame soft shrinkage operators are proximity operators.
Universität Göttingen, Institut für Numerische und Angewandte Mathematik, 2019,
Download PDF (preprint)

Technical Reports:

[5]  Marzieh Hasannasab, Sebastian Neumayer Gerlind Plonka, Simon Setzer, Gabriele Steidl and Jakob Geppert
Frame soft shrinkage as proximity operator.
(arXiv preprint#1910.02843) (results are also contained in:
Parseval proximal neural networks, J. Fourier Anal. Appl. 26, 59 (2020)).
[4]  Gerlind Plonka and Vlada Pototskaia
Application of the AAK theory for sparse approximation of exponential sums.
(arXiv preprint#1609.09603) (results are partially contained in:
Computation of adaptive Fourier series by sparse approximation of exponential sums, J. Fourier Anal. Appl. 25(4) (2019), 1580–1608).
[3] Jianwei Ma, Gerlind Plonka.
A review of curvelets and recent applications.
Download PDF(technical report, 2009) (results are mainly contained in:
The curvelet transform: A review of recent applications, IEEE Signal Processing Magazine 27(2) (March 2010), 118-133).
[2] Gerlind Plonka, Manfred Tasche.
Split-radix algorithms for discrete cosine transforms.
􏰣􏰞􏰟 Download PDF (technical report 2002)􏰤􏰕􏰢􏰥􏰟􏰦􏰖􏰦 􏰧􏰟􏰙􏰨􏰢􏰣􏰞􏰟􏰡􏰢 􏰣􏰞􏰟 (results are mainly contained in:􏰤􏰕􏰢􏰥􏰟􏰦􏰖􏰦 􏰧􏰟􏰕􏰝􏰞􏰨􏰞􏰡􏰦􏰖􏰟􏰕􏰥 􏰧􏰟􏰙􏰨􏰢􏰣􏰞􏰟􏰡􏰢􏰒􏰓􏰔􏰕􏰖􏰗􏰘􏰙􏰚􏰕􏰛􏰧􏰟􏰕􏰝􏰞􏰨􏰞􏰡􏰦􏰖􏰟􏰕􏰥
􏰜􏰔􏰝􏰞􏰟􏰕􏰖􏰠􏰡􏰢Fast and numerically stable algorithms for discrete cosine transforms, Linear Algebra and its Applications 394 (2005), 309-345).
[1] Gerlind Plonka, Manfred Tasche.
Reversible integer DCT algorithms.
Download PDF (technical report 2002)
(results are mainly contained in: Invertible integer DCT algorithms, Appl. Comput. Harmon. Anal. 15 (2003), 70-88).

Go to top of page | Back to Gerlind Plonka's home page