regpy.solvers.nonlinear.fista¶
Classes¶
| The generalized FISTA algorithm for minimization of Tikhonov functionals | 
Module Contents¶
- class regpy.solvers.nonlinear.fista.FISTA(setting, init=None, tau=None, op_lower_bound=0, proximal_pars=None, logging_level=logging.INFO)[source]¶
- Bases: - regpy.solvers.RegSolver- The generalized FISTA algorithm for minimization of Tikhonov functionals \[\mathcal{S}_{g^{\delta}}(F(f)) + \alpha \mathcal{R}(f).\]- Gradient steps are performed on the first term, and proximal steps on the second term. - Parameters:
- setting (regpy.solvers.TikhonovRegularizationSetting) – The setting of the forward problem. Includes the penalty and data fidelity functionals. 
- init (setting.op.domain [defaul: setting.op.domain.zeros()]) – The initial guess 
- tau (float [default: None]) – Step size of minimization procedure. In the default case the reciprocal of the operator norm of $T^*T$ is used. 
- op_lower_bound (float [default: 0]) – lower bound of the operator: \(\|op(f)\|\geq op_lower_bound * \|f\|\). Used to define convexity parameter of data functional. 
- proximal_pars (dict [default: {}]) – Parameter dictionary passed to the computation of the prox-operator for the penalty term. 
- logging_level ([default: logging.INFO]) – logging level 
 
 - x¶
- The current iterate. 
 - mu_penalty¶
 - mu_data_fidelity¶
 - proximal_pars = None¶
- Proximal parameters that are passed to prox-operator of penalty term. 
 - tau¶
- The step size parameter 
 - t = 0¶
 - t_old = 0¶
 - mu¶
 - x_old¶
 - q¶