regpy.solvers.nonlinear.fista¶
Classes¶
The generalized FISTA algorithm for minimization of Tikhonov functionals |
Module Contents¶
- class regpy.solvers.nonlinear.fista.FISTA(setting, init=None, tau=None, op_lower_bound=0, proximal_pars=None, logging_level=logging.INFO)[source]¶
Bases:
regpy.solvers.RegSolverThe generalized FISTA algorithm for minimization of Tikhonov functionals
\[\mathcal{S}_{g^{\delta}}(F(f)) + \alpha \mathcal{R}(f).\]Gradient steps are performed on the first term, and proximal steps on the second term.
- Parameters:
setting (regpy.solvers.TikhonovRegularizationSetting) – The setting of the forward problem. Includes the penalty and data fidelity functionals.
init (setting.op.domain [defaul: setting.op.domain.zeros()]) – The initial guess
tau (float [default: None]) – Step size of minimization procedure. In the default case the reciprocal of the operator norm of $T^*T$ is used.
op_lower_bound (float [default: 0]) – lower bound of the operator: \(\|op(f)\|\geq op_lower_bound * \|f\|\). Used to define convexity parameter of data functional.
proximal_pars (dict [default: {}]) – Parameter dictionary passed to the computation of the prox-operator for the penalty term.
logging_level ([default: logging.INFO]) – logging level
- x¶
The current iterate.
- mu_penalty¶
- mu_data_fidelity¶
- proximal_pars = None¶
Proximal parameters that are passed to prox-operator of penalty term.
- tau¶
The step size parameter
- t = 0¶
- t_old = 0¶
- mu¶
- x_old¶
- q¶