Veröffentlichungen 2013

  • A. Langer; S. Osher und C.-B. Schönlieb:
    Bregmanized Domain Decomposition for Image Restoration,
    J. Scientific Computing, Nr.54, S.549--576.

  • Bangerth, W. und Heister, T.:
    What Makes Computational Open Source Software Libraries Successful?,
    Computational Science & Discovery, Nr.6, S.015010/1--18.

  • Benjamin Wacker und Gert Lube:
    A Local Projection Stabilization FEM for the linearized stationary MHD problem,
    ,
    http://num.math.uni-goettingen.de/preprints/files/2013-34.pdf,
    Submitted to the ENUMATH 2013 Conference Proceedings.

  • Brimberg, J.; Juel, H.; Körner, M.C. und Schöbel, A.:
    On models for continuous facility location with partial coverage,
    JORS, S.--,
    available online.

  • Feng, J. und Krahmer, F:
    An RIP approach to Sigma-Delta quantization for compressed sensing,
    http://num.math.uni-goettingen.de/~f.krahmer/FK13.pdf,
    preprint.

  • Frick, K.; Marnitz, P. und Munk, A.:
    Statistical Multiresolution Estimation for Variational Imaging: With an Application in Poisson-Biophotonics,
    J. Math. Imaging Vision, Nr.46, S.370--387.

  • Gerlind Plonka und Marius Wischerhoff:
    How many Fourier samples are needed for real function reconstruction?,
    Journal of Applied Mathematics and Computing, Nr.42(1-2), S.117-137.

  • Heister, Timo und Rapin, Gerd:
    Efficient augmented Lagrangian-type preconditioning for the Oseen problem using Grad-Div stabilization,
    International Journal for Numerical Methods in Fluids, Nr.71(1), S.118--134.

  • Johannes Merkle und Benjamin Tams:
    Security of the Improved Fuzzy Vault Scheme in the Presence of Record Multiplicity,
    arxiv:1312.5225.

  • Karola Kombrink; Axel Munk und Tim Friede:
    Design and semiparametric analysis of non-inferiority trials with active and placebo control for censored time to event data,
    Statistics in Medicine, Nr.32, S.3055--3066.

  • Lemster, W.; Lube, G.; Of, G. und Steinbach, O.:
    Analysis of a kinematic dynamo model with FEM-BEM coupling,
    Math. Meth. Appl. Sc..

  • M. Scheuerer; R. Schaback und M. Schlather:
    Interpolation of Spatial Data - A Stochastic or a Deterministic Problem?,
    European Journal of Applied Mathematics, Nr.24, S.601-629.

  • Marius Wischerhoff:
    Real function reconstruction from sparse Fourier samples,
    Proc. Appl. Math. Mech., Nr.13, S.491-492.

  • Maryam Pazouki und Robert Schaback:
    Bases for Conditionally Positive Definite Kernels,
    Computational and Applied Mathematics, Nr.243, S.152--163.

  • Oesting, Marco und Schlather, Martin:
    Conditional sampling for max-stable processes with a mixed moving maxima representation,
    Extremes, S.1-36,
    http://dx.doi.org/10.1007/s10687-013-0178-1.

  • R. Hesse; D. R. Luke und P. Neumann:
    Projection Methods for Sparse Affine Feasibility: Results and Counterexamples,
    arXiv:1307.2009.

  • R. Hesse; D. R. Luke und P. Neumann:
    Projection Methods for Sparse Affine Feasibility: results and counterexamples,
    arXiv:1307.2009.

  • Robert Hesse und D. Russell Luke:
    Nonconvex Notions of Regularity and Convergence of Fundamental Algorithms for Feasibility Problems,
    SIAM J. Optim., Nr.23(4), S.2397--2419.

  • Strokorb, Kirstin und Schlather, Martin:
    An exceptional max-stable process fully parameterized by its extremal coefficients,
    Bernoulli,
    http://www.e-publications.org/ims/submission/BEJ/user/submissionFile/15227?confirm=58c92b0c,
    accepted.

  • T. Hohage und F. Werner:
    Convergence in expectation results for phase retrieval problems in x-ray imaging,
    Proceedings of the 11th International Conference on Mathematical and Numerical Aspects of Waves, S.139--140.

  • T. Peter; G. Plonka und D. Rosca:
    Representation of Sparse Legendre Expansions,
    Journal of Symbolic Computation, Nr.50, S.159-169.

  • Tams, B.:
    Absolute Fingerprint Pre-Alignment in Minutiae-Based Cryptosystems,
    Proc. BIOSIG 2013, ser LNI,, Nr.212, S.75--86.

  • Thomas Peter und Gerlind Plonka:
    A Generalized Prony Method for Reconstruction of Sparse Sums of Eigenfunctions of Linear Operators,
    Inverse Problems, Nr.29, S.025001 (21pp).

  • Thorsten Hohage und Frank Werner:
    Iteratively regularized Newton-type methods for general data misfit functionals and applications to Poisson data,
    Numer. Math., Nr.123, S.745--779.

  • Thorsten Hohage und Sofiane Souusi:
    Riesz bases and Jordan form of the translation operator in semi-infinite periodic waveguides,
    J. Math. Pures Appl. (9), Nr.100(1), S.113--135,
    http://dx.doi.org/10.1016/j.matpur.2012.10.013.